|
|
Line 1: |
Line 1: |
| ORCiD:
| | ORCID: |
| meta: | | '@context': http://schema.org |
| status_code: 200
| | '@id': https://orcid.org/0000-0003-3638-8572 |
| timestamp: '2023-10-20T08:42:11.311752'
| | '@reverse': |
| url: https://orcid.org/0000-0003-3638-8572
| | creator: |
| orcid: | | - '@id': https://doi.org/10.1002/lno.12549 |
| activities: | | '@type': CreativeWork |
| educations:
| | identifier: |
| affiliation-group:
| | '@type': PropertyValue |
| - external-ids:
| | propertyID: doi |
| external-id: []
| | value: 10.1002/lno.12549 |
| last-modified-date:
| | name: Deep learning of estuary salinity dynamics is physically accurate at a |
| value: 1422359356390
| | fraction of hydrodynamic model computational cost |
| summaries:
| | - '@id': https://doi.org/10.1038/s44221-024-00202-z |
| - education-summary:
| | '@type': CreativeWork |
| created-date:
| | identifier: |
| value: 1422359356390
| | '@type': PropertyValue |
| department-name: University Program in Ecology
| | propertyID: doi |
| display-index: '0'
| | value: 10.1038/s44221-024-00202-z |
| end-date:
| | name: Deep learning for water quality |
| day:
| | - '@id': https://doi.org/10.1029/2023wr034420 |
| value: '15'
| | '@type': CreativeWork |
| month:
| | identifier: |
| value: '05'
| | '@type': PropertyValue |
| year:
| | propertyID: doi |
| value: '2012'
| | value: 10.1029/2023wr034420 |
| external-ids: null
| | name: Identifying Structural Priors in a Hybrid Differentiable Model for Stream |
| last-modified-date:
| | Water Temperature Modeling |
| value: 1422359356390
| | - '@id': https://doi.org/10.1029/2023wr035327 |
| organization:
| | '@type': CreativeWork |
| address:
| | identifier: |
| city: Durham
| | '@type': PropertyValue |
| country: US
| | propertyID: doi |
| region: NC
| | value: 10.1029/2023wr035327 |
| disambiguated-organization:
| | name: "Train, Inform, Borrow, or Combine? Approaches to Process\u2010Guided\ |
| disambiguated-organization-identifier: '3065'
| | \ Deep Learning for Groundwater\u2010Influenced Stream Temperature Prediction" |
| disambiguation-source: RINGGOLD
| | - '@id': https://doi.org/10.1038/s43017-023-00450-9 |
| name: Duke University
| | '@type': CreativeWork |
| path: /0000-0003-3638-8572/education/694107
| | identifier: |
| put-code: 694107
| | '@type': PropertyValue |
| role-title: PhD
| | propertyID: doi |
| source:
| | value: 10.1038/s43017-023-00450-9 |
| assertion-origin-client-id: null
| | name: Differentiable modelling to unify machine learning and physical models |
| assertion-origin-name: null
| | for geosciences |
| assertion-origin-orcid: null
| | - '@id': https://doi.org/10.1111/1752-1688.13093 |
| source-client-id: null
| | '@type': CreativeWork |
| source-name:
| | identifier: |
| value: Alison P. Appling
| | '@type': PropertyValue |
| source-orcid:
| | propertyID: doi |
| host: orcid.org
| | value: 10.1111/1752-1688.13093 |
| path: 0000-0003-3638-8572
| | name: "Near\u2010term forecasts of stream temperature using deep learning and\ |
| uri: https://orcid.org/0000-0003-3638-8572
| | \ data assimilation in support of management decisions" |
| start-date:
| | - '@id': https://doi.org/10.1029/2022wr033880 |
| day:
| | '@type': CreativeWork |
| value: '15'
| | identifier: |
| month:
| | '@type': PropertyValue |
| value: 08
| | propertyID: doi |
| year:
| | value: 10.1029/2022wr033880 |
| value: '2006'
| | name: 'Stream Temperature Prediction in a Shifting Environment: Explaining the |
| url: null
| | Influence of Deep Learning Architecture' |
| visibility: public
| | - '@id': https://doi.org/10.31223/x5964s |
| - external-ids: | | '@type': CreativeWork |
| external-id: []
| | identifier: |
| last-modified-date:
| | '@type': PropertyValue |
| value: 1513633506381
| | propertyID: doi |
| summaries:
| | value: 10.31223/x5964s |
| - education-summary:
| | name: Machine learning for understanding inland water quantity, quality, and |
| created-date:
| | ecology |
| value: 1513633506381
| | - '@id': https://doi.org/10.1002/lno.12098 |
| department-name: null
| | '@type': CreativeWork |
| display-index: '0'
| | identifier: |
| end-date:
| | '@type': PropertyValue |
| day:
| | propertyID: doi |
| value: '15'
| | value: 10.1002/lno.12098 |
| month:
| | name: "Long\u2010term change in metabolism phenology in north temperate lakes" |
| value: '04'
| | - '@id': https://doi.org/10.1016/b978-0-12-819166-8.00121-3 |
| year:
| | '@type': CreativeWork |
| value: '2004'
| | identifier: |
| external-ids: null
| | '@type': PropertyValue |
| last-modified-date:
| | propertyID: doi |
| value: 1513633506381
| | value: 10.1016/b978-0-12-819166-8.00121-3 |
| organization:
| | name: Machine Learning for Understanding Inland Water Quantity, Quality, and |
| address:
| | Ecology |
| city: Stanford
| | - '@id': https://doi.org/10.1002/hyp.14565 |
| country: US
| | '@type': CreativeWork |
| region: CA
| | identifier: |
| disambiguated-organization: null
| | '@type': PropertyValue |
| name: Stanford University
| | propertyID: doi |
| path: /0000-0003-3638-8572/education/5087332
| | value: 10.1002/hyp.14565 |
| put-code: 5087332
| | name: "Can machine learning accelerate process understanding and decision\u2010\ |
| role-title: B.S. Symbolic Systems
| | relevant predictions of river water quality?" |
| source:
| | - '@id': https://doi.org/10.1029/2021wr030138 |
| assertion-origin-client-id: null
| | '@type': CreativeWork |
| assertion-origin-name: null
| | identifier: |
| assertion-origin-orcid: null
| | '@type': PropertyValue |
| source-client-id: null
| | propertyID: doi |
| source-name:
| | value: 10.1029/2021wr030138 |
| value: Alison P. Appling
| | name: "Multi\u2010Task Deep Learning of Daily Streamflow and Water Temperature" |
| source-orcid:
| | - '@id': https://doi.org/10.1002/hyp.14484 |
| host: orcid.org
| | '@type': CreativeWork |
| path: 0000-0003-3638-8572
| | identifier: |
| uri: https://orcid.org/0000-0003-3638-8572
| | '@type': PropertyValue |
| start-date:
| | propertyID: doi |
| day:
| | value: 10.1002/hyp.14484 |
| value: '15'
| | name: "Long\u2010term suspended sediment and particulate organic carbon yields\ |
| month:
| | \ from the Reynolds Creek Experimental Watershed and Critical Zone Observatory" |
| value: 09
| | - '@id': https://doi.org/10.1002/essoar.10509644.1 |
| year:
| | '@type': CreativeWork |
| value: '2000'
| | identifier: |
| url: null
| | '@type': PropertyValue |
| visibility: public
| | propertyID: doi |
| last-modified-date:
| | value: 10.1002/essoar.10509644.1 |
| value: 1513633506381
| | name: Process learning of stream temperature modelling using deep learning and |
| path: /0000-0003-3638-8572/educations
| | big data |
| employments: | | - '@id': https://doi.org/10.1002/hyp.14400 |
| affiliation-group: | | '@type': CreativeWork |
| - external-ids: | | identifier: |
| external-id: []
| | '@type': PropertyValue |
| last-modified-date:
| | propertyID: doi |
| value: 1680620863129
| | value: 10.1002/hyp.14400 |
| summaries:
| | name: "Deep learning approaches for improving prediction of daily stream temperature\ |
| - employment-summary:
| | \ in data\u2010scarce, unmonitored, and dammed basins" |
| created-date:
| | - '@id': https://doi.org/10.31223/x55k7g |
| value: 1680620755344
| | '@type': CreativeWork |
| department-name: Analysis & Prediction Branch, Integrated Modeling and
| | identifier: |
| Prediction Division
| | '@type': PropertyValue |
| display-index: '1'
| | propertyID: doi |
| end-date: null
| | value: 10.31223/x55k7g |
| external-ids: null
| | name: Near-term forecasts of stream temperature using process-guided deep learning |
| last-modified-date:
| | and data assimilation |
| value: 1680620863129
| | - '@id': https://doi.org/10.1029/2021wr029579 |
| organization:
| | '@type': CreativeWork |
| address:
| | identifier: |
| city: State College
| | '@type': PropertyValue |
| country: US
| | propertyID: doi |
| region: PA
| | value: 10.1029/2021wr029579 |
| disambiguated-organization:
| | name: "Predicting Water Temperature Dynamics of Unmonitored Lakes With Meta\u2010\ |
| disambiguated-organization-identifier: http://dx.doi.org/10.13039/100000203
| | Transfer Learning" |
| disambiguation-source: FUNDREF
| | - '@id': https://doi.org/10.31223/x5004x |
| name: U.S. Geological Survey
| | '@type': CreativeWork |
| path: /0000-0003-3638-8572/employment/20018279
| | identifier: |
| put-code: 20018279
| | '@type': PropertyValue |
| role-title: Ecologist
| | propertyID: doi |
| source:
| | value: 10.31223/x5004x |
| assertion-origin-client-id: null
| | name: Multi-task deep learning of daily streamflow and water temperature |
| assertion-origin-name: null
| | - '@id': https://doi.org/10.1088/1748-9326/abd501 |
| assertion-origin-orcid: null
| | '@type': CreativeWork |
| source-client-id: null
| | identifier: |
| source-name:
| | '@type': PropertyValue |
| value: Alison P. Appling
| | propertyID: doi |
| source-orcid:
| | value: 10.1088/1748-9326/abd501 |
| host: orcid.org
| | name: Exploring the exceptional performance of a deep learning stream temperature |
| path: 0000-0003-3638-8572
| | model and the value of streamflow data |
| uri: https://orcid.org/0000-0003-3638-8572
| | - '@id': https://doi.org/10.1029/2019wr024883 |
| start-date:
| | '@type': CreativeWork |
| day:
| | identifier: |
| value: '15'
| | '@type': PropertyValue |
| month:
| | propertyID: doi |
| value: '02'
| | value: 10.1029/2019wr024883 |
| year:
| | name: 'AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland |
| value: '2023'
| | Waters' |
| url: null
| | - '@id': https://doi.org/10.1029/2019wr024922 |
| visibility: public
| | '@type': CreativeWork |
| - external-ids: | | identifier: |
| external-id: []
| | '@type': PropertyValue |
| last-modified-date:
| | propertyID: doi |
| value: 1680620669976
| | value: 10.1029/2019wr024922 |
| summaries:
| | name: "Process\u2010Guided Deep Learning Predictions of Lake Water Temperature" |
| - employment-summary:
| | - '@id': https://doi.org/10.1002/lno.11154 |
| created-date:
| | '@type': CreativeWork |
| value: 1478105501922
| | identifier: |
| department-name: Data Science Branch, Integrated Information Dissemination
| | '@type': PropertyValue |
| Division
| | propertyID: doi |
| display-index: '1'
| | value: 10.1002/lno.11154 |
| end-date:
| | name: 'Metabolic rhythms in flowing waters: An approach for classifying river |
| day: null
| | productivity regimes' |
| month: null
| | - '@id': https://doi.org/10.1002/lno.11127 |
| year:
| | '@type': CreativeWork |
| value: '2023'
| | identifier: |
| external-ids: null
| | '@type': PropertyValue |
| last-modified-date:
| | propertyID: doi |
| value: 1680620669976
| | value: 10.1002/lno.11127 |
| organization:
| | name: Enhancement of primary production during drought in a temperate watershed |
| address:
| | is greater in larger rivers than headwater streams |
| city: State College
| | - '@id': https://doi.org/10.1029/2018gl081166 |
| country: US
| | '@type': CreativeWork |
| region: PA
| | identifier: |
| disambiguated-organization:
| | '@type': PropertyValue |
| disambiguated-organization-identifier: '2928'
| | propertyID: doi |
| disambiguation-source: RINGGOLD
| | value: 10.1029/2018gl081166 |
| name: US Geological Survey
| | name: "Detecting Signals of Large\u2010Scale Climate Phenomena in Discharge\ |
| path: /0000-0003-3638-8572/employment/2530363
| | \ and Nutrient Loads in the Mississippi\u2010Atchafalaya River Basin" |
| put-code: 2530363
| | - '@id': https://doi.org/10.1038/sdata.2018.292 |
| role-title: Ecologist
| | '@type': CreativeWork |
| source:
| | identifier: |
| assertion-origin-client-id: null
| | '@type': PropertyValue |
| assertion-origin-name: null
| | propertyID: doi |
| assertion-origin-orcid: null
| | value: 10.1038/sdata.2018.292 |
| source-client-id: null
| | name: The metabolic regimes of 356 rivers in the United States |
| source-name:
| | - '@id': https://doi.org/10.1002/2017jg004140 |
| value: Alison P. Appling
| | '@type': CreativeWork |
| source-orcid:
| | identifier: |
| host: orcid.org
| | '@type': PropertyValue |
| path: 0000-0003-3638-8572
| | propertyID: doi |
| uri: https://orcid.org/0000-0003-3638-8572
| | value: 10.1002/2017jg004140 |
| start-date:
| | name: 'Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism |
| day:
| | Estimation' |
| value: '15'
| | - '@id': https://doi.org/10.1002/lno.10726 |
| month:
| | '@type': CreativeWork |
| value: '02'
| | identifier: |
| year:
| | '@type': PropertyValue |
| value: '2016'
| | propertyID: doi |
| url: null
| | value: 10.1002/lno.10726 |
| visibility: public
| | name: The metabolic regimes of flowing waters |
| - external-ids: | | - '@type': CreativeWork |
| external-id: []
| | identifier: |
| last-modified-date:
| | '@type': PropertyValue |
| value: 1554379611477
| | propertyID: issn |
| summaries:
| | value: 2073-4859 |
| - employment-summary:
| | name: 'sbtools: A Package Connecting R to Cloud-based Data for Collaborative |
| created-date:
| | Online Research' |
| value: 1475195090818
| | sameAs: https://portal.issn.org/resource/ISSN/2073-4859 |
| department-name: Office of Water Information
| | - '@id': https://doi.org/10.1111/ecog.01880 |
| display-index: '1'
| | '@type': CreativeWork |
| end-date:
| | identifier: |
| day:
| | '@type': PropertyValue |
| value: '28'
| | propertyID: doi |
| month:
| | value: 10.1111/ecog.01880 |
| value: '10'
| | name: 'geoknife: reproducible web-processing of large gridded datasets' |
| year:
| | - '@id': https://doi.org/10.1111/oik.02385 |
| value: '2016'
| | '@type': CreativeWork |
| external-ids: null
| | identifier: |
| last-modified-date:
| | '@type': PropertyValue |
| value: 1554379611477
| | propertyID: doi |
| organization:
| | value: 10.1111/oik.02385 |
| address:
| | name: Stoichiometric flexibility in response to fertilization along gradients |
| city: Middleton
| | of environmental and organismal nutrient richness |
| country: US
| | - '@id': https://doi.org/10.1890/es14-00517.1 |
| region: WI
| | '@type': CreativeWork |
| disambiguated-organization:
| | identifier: |
| disambiguated-organization-identifier: '2928'
| | '@type': PropertyValue |
| disambiguation-source: RINGGOLD
| | propertyID: doi |
| name: US Geological Survey
| | value: 10.1890/es14-00517.1 |
| path: /0000-0003-3638-8572/employment/2344338
| | name: 'Reducing bias and quantifying uncertainty in watershed flux estimates: |
| put-code: 2344338
| | the R package loadflex' |
| role-title: Data Scientist (contractor)
| | - '@id': https://doi.org/10.1086/677282 |
| source:
| | '@type': CreativeWork |
| assertion-origin-client-id: null
| | identifier: |
| assertion-origin-name: null
| | '@type': PropertyValue |
| assertion-origin-orcid: null
| | propertyID: doi |
| source-client-id: null
| | value: 10.1086/677282 |
| source-name:
| | name: Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling |
| value: Alison P. Appling
| | of Biogeochemical Cycles |
| source-orcid:
| | - '@id': https://doi.org/10.1002/2013jg002543 |
| host: orcid.org
| | '@type': CreativeWork |
| path: 0000-0003-3638-8572
| | identifier: |
| uri: https://orcid.org/0000-0003-3638-8572
| | '@type': PropertyValue |
| start-date:
| | propertyID: doi |
| day:
| | value: 10.1002/2013jg002543 |
| value: '16'
| | name: 'Floodplain biogeochemical mosaics: A multidimensional view of alluvial |
| month:
| | soils' |
| value: '04'
| | '@type': Person |
| year:
| | affiliation: |
| value: '2016'
| | - '@id': https://doi.org/10.13039/100000203 |
| url: null
| | '@type': Organization |
| visibility: public
| | alternateName: Analysis & Prediction Branch, Integrated Modeling and Prediction |
| - external-ids: | | Division |
| external-id: []
| | name: U.S. Geological Survey |
| last-modified-date:
| | - '@type': Organization |
| value: 1475195455293
| | alternateName: Data Science Branch, Integrated Information Dissemination Division |
| summaries:
| | identifier: |
| - employment-summary:
| | '@type': PropertyValue |
| created-date:
| | propertyID: RINGGOLD |
| value: 1475195438121
| | value: '2928' |
| department-name: Center for Freshwater Limnology
| | name: US Geological Survey |
| display-index: '0'
| | - '@type': Organization |
| end-date:
| | alternateName: Office of Water Information |
| day:
| | identifier: |
| value: '15'
| | '@type': PropertyValue |
| month:
| | propertyID: RINGGOLD |
| value: '04'
| | value: '2928' |
| year:
| | name: US Geological Survey |
| value: '2016'
| | - '@type': Organization |
| external-ids: null
| | alternateName: Center for Freshwater Limnology |
| last-modified-date:
| | identifier: |
| value: 1475195455293
| | '@type': PropertyValue |
| organization:
| | propertyID: RINGGOLD |
| address:
| | value: '5228' |
| city: Madison
| | name: University of Wisconsin Madison |
| country: US
| | - '@type': Organization |
| region: WI
| | alternateName: Natural Resources and the Environment |
| disambiguated-organization:
| | identifier: |
| disambiguated-organization-identifier: '5228'
| | '@type': PropertyValue |
| disambiguation-source: RINGGOLD
| | propertyID: RINGGOLD |
| name: University of Wisconsin Madison
| | value: '3067' |
| path: /0000-0003-3638-8572/employment/2344391
| | name: University of New Hampshire |
| put-code: 2344391
| | - '@type': Organization |
| role-title: Postdoc
| | alternateName: Nicholas School of the Environment |
| source:
| | identifier: |
| assertion-origin-client-id: null
| | '@type': PropertyValue |
| assertion-origin-name: null
| | propertyID: RINGGOLD |
| assertion-origin-orcid: null
| | value: '3065' |
| source-client-id: null
| | name: Duke University |
| source-name:
| | alumniOf: |
| value: Alison P. Appling
| | '@type': Organization |
| source-orcid:
| | alternateName: University Program in Ecology |
| host: orcid.org
| | identifier: |
| path: 0000-0003-3638-8572
| | '@type': PropertyValue |
| uri: https://orcid.org/0000-0003-3638-8572
| | propertyID: RINGGOLD |
| start-date:
| | value: '3065' |
| day:
| | name: Duke University |
| value: '16'
| | familyName: Appling |
| month:
| | givenName: Alison |
| value: '04'
| | mainEntityOfPage: https://orcid.org/0000-0003-3638-8572 |
| year:
| | name: Alison P. Appling |
| value: '2015'
| | url: https://www.usgs.gov/staff-profiles/alison-appling |
| url: null
| |
| visibility: public
| |
| - external-ids: | |
| external-id: []
| |
| last-modified-date:
| |
| value: 1475195148517
| |
| summaries:
| |
| - employment-summary:
| |
| created-date:
| |
| value: 1422359433898
| |
| department-name: Natural Resources and the Environment
| |
| display-index: '0'
| |
| end-date:
| |
| day:
| |
| value: '15'
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2015'
| |
| external-ids: null
| |
| last-modified-date:
| |
| value: 1475195148517
| |
| organization:
| |
| address:
| |
| city: Durham
| |
| country: US
| |
| region: NH
| |
| disambiguated-organization:
| |
| disambiguated-organization-identifier: '3067'
| |
| disambiguation-source: RINGGOLD
| |
| name: University of New Hampshire
| |
| path: /0000-0003-3638-8572/employment/694114
| |
| put-code: 694114
| |
| role-title: Postdoctoral Associate
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| start-date:
| |
| day:
| |
| value: '01'
| |
| month:
| |
| value: '06'
| |
| year:
| |
| value: '2013'
| |
| url: null
| |
| visibility: public
| |
| - external-ids: | |
| external-id: []
| |
| last-modified-date:
| |
| value: 1422359569494
| |
| summaries:
| |
| - employment-summary:
| |
| created-date:
| |
| value: 1422359569494
| |
| department-name: Nicholas School of the Environment
| |
| display-index: '0'
| |
| end-date:
| |
| day:
| |
| value: '25'
| |
| month:
| |
| value: '05'
| |
| year:
| |
| value: '2013'
| |
| external-ids: null
| |
| last-modified-date:
| |
| value: 1422359569494
| |
| organization:
| |
| address:
| |
| city: Durham
| |
| country: US
| |
| region: NC
| |
| disambiguated-organization:
| |
| disambiguated-organization-identifier: '3065'
| |
| disambiguation-source: RINGGOLD
| |
| name: Duke University
| |
| path: /0000-0003-3638-8572/employment/694125
| |
| put-code: 694125
| |
| role-title: Postdoctoral Associate
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| start-date:
| |
| day:
| |
| value: '15'
| |
| month:
| |
| value: '05'
| |
| year:
| |
| value: '2012'
| |
| url: null
| |
| visibility: public
| |
| last-modified-date:
| |
| value: 1680620863129
| |
| path: /0000-0003-3638-8572/employments
| |
| works:
| |
| group:
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1038/s43017-023-00450-9
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1038/s43017-023-00450-9
| |
| external-id-value: 10.1038/s43017-023-00450-9
| |
| last-modified-date:
| |
| value: 1689068898570
| |
| work-summary:
| |
| - created-date:
| |
| value: 1689068898570
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1038/s43017-023-00450-9
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1038/s43017-023-00450-9
| |
| external-id-value: 10.1038/s43017-023-00450-9
| |
| journal-title:
| |
| value: Nature Reviews Earth & Environment
| |
| last-modified-date:
| |
| value: 1689068898570
| |
| path: /0000-0003-3638-8572/work/138450227
| |
| publication-date:
| |
| day:
| |
| value: '11'
| |
| month:
| |
| value: '07'
| |
| year:
| |
| value: '2023'
| |
| put-code: 138450227
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Differentiable modelling to unify machine learning and physical
| |
| models for geosciences
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1038/s43017-023-00450-9
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/1752-1688.13093
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1111/1752-1688.13093
| |
| external-id-value: 10.1111/1752-1688.13093
| |
| last-modified-date:
| |
| value: 1680684226460
| |
| work-summary:
| |
| - created-date:
| |
| value: 1672216714277
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/1752-1688.13093
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1111/1752-1688.13093
| |
| external-id-value: 10.1111/1752-1688.13093
| |
| journal-title:
| |
| value: JAWRA Journal of the American Water Resources Association
| |
| last-modified-date:
| |
| value: 1680684226460
| |
| path: /0000-0003-3638-8572/work/125434263
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2023'
| |
| put-code: 125434263
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Near\u2010term forecasts of stream temperature using deep\
| |
| \ learning and data assimilation in support of management decisions"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1111/1752-1688.13093
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2022wr033880
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2022WR033880
| |
| external-id-value: 10.1029/2022WR033880
| |
| last-modified-date:
| |
| value: 1680618379030
| |
| work-summary:
| |
| - created-date:
| |
| value: 1678826704977
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2022wr033880
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2022WR033880
| |
| external-id-value: 10.1029/2022WR033880
| |
| journal-title:
| |
| value: Water Resources Research
| |
| last-modified-date:
| |
| value: 1680618379030
| |
| path: /0000-0003-3638-8572/work/130828584
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2023'
| |
| put-code: 130828584
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'Stream Temperature Prediction in a Shifting Environment: Explaining
| |
| the Influence of Deep Learning Architecture'
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2022WR033880
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x5964s
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X5964S
| |
| external-id-value: 10.31223/X5964S
| |
| last-modified-date:
| |
| value: 1662372743926
| |
| work-summary:
| |
| - created-date:
| |
| value: 1662214810641
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x5964s
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X5964S
| |
| external-id-value: 10.31223/X5964S
| |
| journal-title: null
| |
| last-modified-date:
| |
| value: 1662372743926
| |
| path: /0000-0003-3638-8572/work/118383357
| |
| publication-date:
| |
| day:
| |
| value: '05'
| |
| month:
| |
| value: 09
| |
| year:
| |
| value: '2022'
| |
| put-code: 118383357
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Machine learning for understanding inland water quantity, quality,
| |
| and ecology
| |
| translated-title: null
| |
| type: preprint
| |
| url:
| |
| value: https://doi.org/10.31223/X5964S
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.12098
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.12098
| |
| external-id-value: 10.1002/lno.12098
| |
| last-modified-date:
| |
| value: 1660021481042
| |
| work-summary:
| |
| - created-date:
| |
| value: 1652956867009
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.12098
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.12098
| |
| external-id-value: 10.1002/lno.12098
| |
| journal-title:
| |
| value: Limnology and Oceanography
| |
| last-modified-date:
| |
| value: 1660021481042
| |
| path: /0000-0003-3638-8572/work/113279349
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '07'
| |
| year:
| |
| value: '2022'
| |
| put-code: 113279349
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Long\u2010term change in metabolism phenology in north temperate\
| |
| \ lakes"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/lno.12098
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1016/b978-0-12-819166-8.00121-3
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1016/b978-0-12-819166-8.00121-3
| |
| external-id-value: 10.1016/b978-0-12-819166-8.00121-3
| |
| last-modified-date:
| |
| value: 1672594960712
| |
| work-summary:
| |
| - created-date:
| |
| value: 1672594960712
| |
| display-index: '1'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1016/b978-0-12-819166-8.00121-3
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1016/b978-0-12-819166-8.00121-3
| |
| external-id-value: 10.1016/b978-0-12-819166-8.00121-3
| |
| journal-title:
| |
| value: Encyclopedia of Inland Waters
| |
| last-modified-date:
| |
| value: 1672594960712
| |
| path: /0000-0003-3638-8572/work/125638852
| |
| publication-date:
| |
| day:
| |
| value: '23'
| |
| month:
| |
| value: '05'
| |
| year:
| |
| value: '2022'
| |
| put-code: 125638852
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Machine Learning for Understanding Inland Water Quantity, Quality,
| |
| and Ecology
| |
| translated-title: null
| |
| type: book-chapter
| |
| url:
| |
| value: http://dx.doi.org/10.1016/b978-0-12-819166-8.00121-3
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14565
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14565
| |
| external-id-value: 10.1002/hyp.14565
| |
| last-modified-date:
| |
| value: 1667533893345
| |
| work-summary:
| |
| - created-date:
| |
| value: 1650812560080
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14565
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14565
| |
| external-id-value: 10.1002/hyp.14565
| |
| journal-title:
| |
| value: Hydrological Processes
| |
| last-modified-date:
| |
| value: 1667533893345
| |
| path: /0000-0003-3638-8572/work/111975653
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2022'
| |
| put-code: 111975653
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Can machine learning accelerate process understanding and\
| |
| \ decision\u2010relevant predictions of river water quality?"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/hyp.14565
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2021wr030138
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2021WR030138
| |
| external-id-value: 10.1029/2021WR030138
| |
| last-modified-date:
| |
| value: 1654720133127
| |
| work-summary:
| |
| - created-date:
| |
| value: 1646246575146
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2021wr030138
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2021WR030138
| |
| external-id-value: 10.1029/2021WR030138
| |
| journal-title:
| |
| value: Water Resources Research
| |
| last-modified-date:
| |
| value: 1654720133127
| |
| path: /0000-0003-3638-8572/work/109114107
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2022'
| |
| put-code: 109114107
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Multi\u2010Task Deep Learning of Daily Streamflow and Water\
| |
| \ Temperature"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2021WR030138
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14484
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14484
| |
| external-id-value: 10.1002/hyp.14484
| |
| last-modified-date:
| |
| value: 1654199699533
| |
| work-summary:
| |
| - created-date:
| |
| value: 1645165335562
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14484
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14484
| |
| external-id-value: 10.1002/hyp.14484
| |
| journal-title:
| |
| value: Hydrological Processes
| |
| last-modified-date:
| |
| value: 1654199699533
| |
| path: /0000-0003-3638-8572/work/108414631
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '02'
| |
| year:
| |
| value: '2022'
| |
| put-code: 108414631
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Long\u2010term suspended sediment and particulate organic\
| |
| \ carbon yields from the Reynolds Creek Experimental Watershed and\
| |
| \ Critical Zone Observatory"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/hyp.14484
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/essoar.10509644.1
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/essoar.10509644.1
| |
| external-id-value: 10.1002/essoar.10509644.1
| |
| last-modified-date:
| |
| value: 1654170647468
| |
| work-summary:
| |
| - created-date:
| |
| value: 1639749485050
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/essoar.10509644.1
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/essoar.10509644.1
| |
| external-id-value: 10.1002/essoar.10509644.1
| |
| journal-title: null
| |
| last-modified-date:
| |
| value: 1654170647468
| |
| path: /0000-0003-3638-8572/work/104912989
| |
| publication-date:
| |
| day:
| |
| value: '17'
| |
| month:
| |
| value: '12'
| |
| year:
| |
| value: '2021'
| |
| put-code: 104912989
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Process learning of stream temperature modelling using deep
| |
| learning and big data
| |
| translated-title: null
| |
| type: preprint
| |
| url:
| |
| value: https://doi.org/10.1002/essoar.10509644.1
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14400
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14400
| |
| external-id-value: 10.1002/hyp.14400
| |
| last-modified-date:
| |
| value: 1654164028478
| |
| work-summary:
| |
| - created-date:
| |
| value: 1637930956327
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/hyp.14400
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/hyp.14400
| |
| external-id-value: 10.1002/hyp.14400
| |
| journal-title:
| |
| value: Hydrological Processes
| |
| last-modified-date:
| |
| value: 1654164028478
| |
| path: /0000-0003-3638-8572/work/103796104
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '11'
| |
| year:
| |
| value: '2021'
| |
| put-code: 103796104
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Deep learning approaches for improving prediction of daily\
| |
| \ stream temperature in data\u2010scarce, unmonitored, and dammed\
| |
| \ basins"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/hyp.14400
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x55k7g
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X55K7G
| |
| external-id-value: 10.31223/X55K7G
| |
| last-modified-date:
| |
| value: 1654127674429
| |
| work-summary:
| |
| - created-date:
| |
| value: 1628258027128
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x55k7g
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X55K7G
| |
| external-id-value: 10.31223/X55K7G
| |
| journal-title: null
| |
| last-modified-date:
| |
| value: 1654127674429
| |
| path: /0000-0003-3638-8572/work/98143701
| |
| publication-date:
| |
| day:
| |
| value: '06'
| |
| month:
| |
| value: 08
| |
| year:
| |
| value: '2021'
| |
| put-code: 98143701
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Near-term forecasts of stream temperature using process-guided
| |
| deep learning and data assimilation
| |
| translated-title: null
| |
| type: other
| |
| url:
| |
| value: https://doi.org/10.31223/X55K7G
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2021wr029579
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2021WR029579
| |
| external-id-value: 10.1029/2021WR029579
| |
| last-modified-date:
| |
| value: 1654077240883
| |
| work-summary:
| |
| - created-date:
| |
| value: 1623861032629
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2021wr029579
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2021WR029579
| |
| external-id-value: 10.1029/2021WR029579
| |
| journal-title:
| |
| value: Water Resources Research
| |
| last-modified-date:
| |
| value: 1654077240883
| |
| path: /0000-0003-3638-8572/work/95594436
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '07'
| |
| year:
| |
| value: '2021'
| |
| put-code: 95594436
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Predicting Water Temperature Dynamics of Unmonitored Lakes\
| |
| \ With Meta\u2010Transfer Learning"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2021WR029579
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x5004x
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X5004X
| |
| external-id-value: 10.31223/X5004X
| |
| last-modified-date:
| |
| value: 1654068967469
| |
| work-summary:
| |
| - created-date:
| |
| value: 1621611551126
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.31223/x5004x
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.31223/X5004X
| |
| external-id-value: 10.31223/X5004X
| |
| journal-title: null
| |
| last-modified-date:
| |
| value: 1654068967469
| |
| path: /0000-0003-3638-8572/work/94229514
| |
| publication-date:
| |
| day:
| |
| value: '21'
| |
| month:
| |
| value: '05'
| |
| year:
| |
| value: '2021'
| |
| put-code: 94229514
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Multi-task deep learning of daily streamflow and water temperature
| |
| translated-title: null
| |
| type: other
| |
| url:
| |
| value: https://doi.org/10.31223/X5004X
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1088/1748-9326/abd501
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1088/1748-9326/abd501
| |
| external-id-value: 10.1088/1748-9326/abd501
| |
| last-modified-date:
| |
| value: 1653997614081
| |
| work-summary:
| |
| - created-date:
| |
| value: 1608330133606
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1088/1748-9326/abd501
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1088/1748-9326/abd501
| |
| external-id-value: 10.1088/1748-9326/abd501
| |
| journal-title:
| |
| value: Environmental Research Letters
| |
| last-modified-date:
| |
| value: 1653997614081
| |
| path: /0000-0003-3638-8572/work/85516281
| |
| publication-date:
| |
| day:
| |
| value: '18'
| |
| month:
| |
| value: '12'
| |
| year:
| |
| value: '2020'
| |
| put-code: 85516281
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Exploring the exceptional performance of a deep learning stream
| |
| temperature model and the value of streamflow data
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1088/1748-9326/abd501
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2019wr024883
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2019WR024883
| |
| external-id-value: 10.1029/2019WR024883
| |
| last-modified-date:
| |
| value: 1693628169119
| |
| work-summary:
| |
| - created-date:
| |
| value: 1570816433990
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2019wr024883
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2019WR024883
| |
| external-id-value: 10.1029/2019WR024883
| |
| journal-title:
| |
| value: Water Resources Research
| |
| last-modified-date:
| |
| value: 1693628169119
| |
| path: /0000-0003-3638-8572/work/62997431
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '11'
| |
| year:
| |
| value: '2019'
| |
| put-code: 62997431
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'AquaSat: A Data Set to Enable Remote Sensing of Water Quality
| |
| for Inland Waters'
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2019WR024883
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2019wr024922
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2019WR024922
| |
| external-id-value: 10.1029/2019WR024922
| |
| last-modified-date:
| |
| value: 1693628169347
| |
| work-summary:
| |
| - created-date:
| |
| value: 1573208577007
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2019wr024922
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2019WR024922
| |
| external-id-value: 10.1029/2019WR024922
| |
| journal-title:
| |
| value: Water Resources Research
| |
| last-modified-date:
| |
| value: 1693628169347
| |
| path: /0000-0003-3638-8572/work/64291960
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '11'
| |
| year:
| |
| value: '2019'
| |
| put-code: 64291960
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Process\u2010Guided Deep Learning Predictions of Lake Water\
| |
| \ Temperature"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2019WR024922
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.11154
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.11154
| |
| external-id-value: 10.1002/lno.11154
| |
| last-modified-date:
| |
| value: 1694317266088
| |
| work-summary:
| |
| - created-date:
| |
| value: 1551655636650
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.11154
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.11154
| |
| external-id-value: 10.1002/lno.11154
| |
| journal-title:
| |
| value: Limnology and Oceanography
| |
| last-modified-date:
| |
| value: 1694317266088
| |
| path: /0000-0003-3638-8572/work/54829696
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: 09
| |
| year:
| |
| value: '2019'
| |
| put-code: 54829696
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'Metabolic rhythms in flowing waters: An approach for classifying
| |
| river productivity regimes'
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/lno.11154
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.11127
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.11127
| |
| external-id-value: 10.1002/lno.11127
| |
| last-modified-date:
| |
| value: 1693346336668
| |
| work-summary:
| |
| - created-date:
| |
| value: 1549399524239
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.11127
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/lno.11127
| |
| external-id-value: 10.1002/lno.11127
| |
| journal-title:
| |
| value: Limnology and Oceanography
| |
| last-modified-date:
| |
| value: 1693346336668
| |
| path: /0000-0003-3638-8572/work/53666841
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '07'
| |
| year:
| |
| value: '2019'
| |
| put-code: 53666841
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Enhancement of primary production during drought in a temperate
| |
| watershed is greater in larger rivers than headwater streams
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/lno.11127
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2018gl081166
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2018GL081166
| |
| external-id-value: 10.1029/2018GL081166
| |
| last-modified-date:
| |
| value: 1653693640136
| |
| work-summary:
| |
| - created-date:
| |
| value: 1553030035112
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1029/2018gl081166
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1029/2018GL081166
| |
| external-id-value: 10.1029/2018GL081166
| |
| journal-title:
| |
| value: Geophysical Research Letters
| |
| last-modified-date:
| |
| value: 1653693640136
| |
| path: /0000-0003-3638-8572/work/55477775
| |
| publication-date:
| |
| day:
| |
| value: '16'
| |
| month:
| |
| value: '04'
| |
| year:
| |
| value: '2019'
| |
| put-code: 55477775
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: "Detecting Signals of Large\u2010Scale Climate Phenomena in\
| |
| \ Discharge and Nutrient Loads in the Mississippi\u2010Atchafalaya\
| |
| \ River Basin"
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1029/2018GL081166
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1038/sdata.2018.292
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1038/sdata.2018.292
| |
| external-id-value: 10.1038/sdata.2018.292
| |
| last-modified-date:
| |
| value: 1671585488899
| |
| work-summary:
| |
| - created-date:
| |
| value: 1544537193294
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1038/sdata.2018.292
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1038/sdata.2018.292
| |
| external-id-value: 10.1038/sdata.2018.292
| |
| journal-title:
| |
| value: Scientific Data
| |
| last-modified-date:
| |
| value: 1671585488899
| |
| path: /0000-0003-3638-8572/work/51541390
| |
| publication-date:
| |
| day:
| |
| value: '11'
| |
| month:
| |
| value: '12'
| |
| year:
| |
| value: '2018'
| |
| put-code: 51541390
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: The metabolic regimes of 356 rivers in the United States
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1038/sdata.2018.292
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/2017jg004140
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/2017JG004140
| |
| external-id-value: 10.1002/2017JG004140
| |
| last-modified-date:
| |
| value: 1693946076107
| |
| work-summary:
| |
| - created-date:
| |
| value: 1517970729113
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/2017jg004140
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1002/2017JG004140
| |
| external-id-value: 10.1002/2017JG004140
| |
| journal-title:
| |
| value: 'Journal of Geophysical Research: Biogeosciences'
| |
| last-modified-date:
| |
| value: 1693946076107
| |
| path: /0000-0003-3638-8572/work/41405765
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '02'
| |
| year:
| |
| value: '2018'
| |
| put-code: 41405765
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'Overcoming Equifinality: Leveraging Long Time Series for Stream
| |
| Metabolism Estimation'
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1002/2017JG004140
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.10726
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1002/lno.10726
| |
| last-modified-date:
| |
| value: 1653571399405
| |
| work-summary:
| |
| - created-date:
| |
| value: 1517544415234
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/lno.10726
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1002/lno.10726
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 0024-3590
| |
| external-id-normalized-error: null
| |
| external-id-relationship: part-of
| |
| external-id-type: issn
| |
| external-id-url: null
| |
| external-id-value: 0024-3590
| |
| journal-title:
| |
| value: Limnology and Oceanography
| |
| last-modified-date:
| |
| value: 1653571399405
| |
| path: /0000-0003-3638-8572/work/41237442
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '10'
| |
| year:
| |
| value: '2017'
| |
| put-code: 41237442
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name:
| |
| value: Alison P. Appling
| |
| assertion-origin-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0002-3054-1567
| |
| uri: https://orcid.org/client/0000-0002-3054-1567
| |
| source-name:
| |
| value: Crossref Metadata Search
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: The metabolic regimes of flowing waters
| |
| translated-title: null
| |
| type: journal-article
| |
| url: null
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 2073-4859
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: issn
| |
| external-id-url: null
| |
| external-id-value: issn 2073-4859
| |
| last-modified-date:
| |
| value: 1513633840174
| |
| work-summary:
| |
| - created-date:
| |
| value: 1513633840174
| |
| display-index: '1'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 2073-4859
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: issn
| |
| external-id-url: null
| |
| external-id-value: issn 2073-4859
| |
| journal-title:
| |
| value: The R Journal
| |
| last-modified-date:
| |
| value: 1513633840174
| |
| path: /0000-0003-3638-8572/work/39763276
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: 08
| |
| year:
| |
| value: '2016'
| |
| put-code: 39763276
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'sbtools: A Package Connecting R to Cloud-based Data for Collaborative
| |
| Online Research'
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://journal.r-project.org/archive/2016-1/winslow-chamberlain-appling-etal.pdf
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/ecog.01880
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1111/ecog.01880
| |
| last-modified-date:
| |
| value: 1653559092265
| |
| work-summary:
| |
| - created-date:
| |
| value: 1513633603982
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/ecog.01880
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1111/ecog.01880
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 0906-7590
| |
| external-id-normalized-error: null
| |
| external-id-relationship: part-of
| |
| external-id-type: issn
| |
| external-id-url: null
| |
| external-id-value: 0906-7590
| |
| journal-title:
| |
| value: Ecography
| |
| last-modified-date:
| |
| value: 1653559092265
| |
| path: /0000-0003-3638-8572/work/39763247
| |
| publication-date:
| |
| day:
| |
| value: 09
| |
| month:
| |
| value: '11'
| |
| year:
| |
| value: '2015'
| |
| put-code: 39763247
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name:
| |
| value: Alison P. Appling
| |
| assertion-origin-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0002-3054-1567
| |
| uri: https://orcid.org/client/0000-0002-3054-1567
| |
| source-name:
| |
| value: Crossref Metadata Search
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'geoknife: reproducible web-processing of large gridded datasets'
| |
| translated-title: null
| |
| type: journal-article
| |
| url: null
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/oik.02385
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1111/oik.02385
| |
| external-id-value: 10.1111/oik.02385
| |
| last-modified-date:
| |
| value: 1696222688308
| |
| work-summary:
| |
| - created-date:
| |
| value: 1454004036620
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1111/oik.02385
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: https://doi.org/10.1111/oik.02385
| |
| external-id-value: 10.1111/oik.02385
| |
| journal-title:
| |
| value: Oikos
| |
| last-modified-date:
| |
| value: 1696222688308
| |
| path: /0000-0003-3638-8572/work/21969750
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: '07'
| |
| year:
| |
| value: '2015'
| |
| put-code: 21969750
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0001-9884-1913
| |
| uri: https://orcid.org/client/0000-0001-9884-1913
| |
| source-name:
| |
| value: Crossref
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Stoichiometric flexibility in response to fertilization along
| |
| gradients of environmental and organismal nutrient richness
| |
| translated-title: null
| |
| type: journal-article
| |
| url:
| |
| value: https://doi.org/10.1111/oik.02385
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1890/es14-00517.1
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1890/es14-00517.1
| |
| last-modified-date:
| |
| value: 1653559092272
| |
| work-summary:
| |
| - created-date:
| |
| value: 1513633607253
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1890/es14-00517.1
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url: null
| |
| external-id-value: 10.1890/es14-00517.1
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 2150-8925
| |
| external-id-normalized-error: null
| |
| external-id-relationship: part-of
| |
| external-id-type: issn
| |
| external-id-url: null
| |
| external-id-value: 2150-8925
| |
| journal-title:
| |
| value: Ecosphere
| |
| last-modified-date:
| |
| value: 1653559092272
| |
| path: /0000-0003-3638-8572/work/39763248
| |
| publication-date:
| |
| day: null
| |
| month: null
| |
| year:
| |
| value: '2015'
| |
| put-code: 39763248
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name:
| |
| value: Alison P. Appling
| |
| assertion-origin-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0002-3054-1567
| |
| uri: https://orcid.org/client/0000-0002-3054-1567
| |
| source-name:
| |
| value: Crossref Metadata Search
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'Reducing bias and quantifying uncertainty in watershed flux
| |
| estimates: the R package loadflex'
| |
| translated-title: null
| |
| type: journal-article
| |
| url: null
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1086/677282
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: ''
| |
| external-id-value: 10.1086/677282
| |
| last-modified-date:
| |
| value: 1653359862273
| |
| work-summary:
| |
| - created-date:
| |
| value: 1426517912353
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1086/677282
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: ''
| |
| external-id-value: 10.1086/677282
| |
| journal-title:
| |
| value: The American Naturalist
| |
| last-modified-date:
| |
| value: 1653359862273
| |
| path: /0000-0003-3638-8572/work/15772159
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: 09
| |
| year:
| |
| value: '2014'
| |
| put-code: 15772159
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name:
| |
| value: Alison P. Appling
| |
| assertion-origin-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0002-3054-1567
| |
| uri: https://orcid.org/client/0000-0002-3054-1567
| |
| source-name:
| |
| value: Crossref Metadata Search
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling
| |
| of Biogeochemical Cycles
| |
| translated-title: null
| |
| type: journal-article
| |
| url: null
| |
| visibility: public
| |
| - external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/2013jg002543
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: ''
| |
| external-id-value: 10.1002/2013jg002543
| |
| last-modified-date:
| |
| value: 1653359862267
| |
| work-summary:
| |
| - created-date:
| |
| value: 1426517906207
| |
| display-index: '0'
| |
| external-ids:
| |
| external-id:
| |
| - external-id-normalized:
| |
| transient: true
| |
| value: 10.1002/2013jg002543
| |
| external-id-normalized-error: null
| |
| external-id-relationship: self
| |
| external-id-type: doi
| |
| external-id-url:
| |
| value: ''
| |
| external-id-value: 10.1002/2013jg002543
| |
| journal-title:
| |
| value: J. Geophys. Res. Biogeosci.
| |
| last-modified-date:
| |
| value: 1653359862267
| |
| path: /0000-0003-3638-8572/work/15772158
| |
| publication-date:
| |
| day: null
| |
| month:
| |
| value: 08
| |
| year:
| |
| value: '2014'
| |
| put-code: 15772158
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name:
| |
| value: Alison P. Appling
| |
| assertion-origin-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| source-client-id:
| |
| host: orcid.org
| |
| path: 0000-0002-3054-1567
| |
| uri: https://orcid.org/client/0000-0002-3054-1567
| |
| source-name:
| |
| value: Crossref Metadata Search
| |
| source-orcid: null
| |
| title:
| |
| subtitle: null
| |
| title:
| |
| value: 'Floodplain biogeochemical mosaics: A multidimensional view
| |
| of alluvial soils'
| |
| translated-title: null
| |
| type: journal-article
| |
| url: null
| |
| visibility: public
| |
| last-modified-date:
| |
| value: 1696222688308
| |
| path: /0000-0003-3638-8572/works
| |
| history:
| |
| claimed: true
| |
| completion-date:
| |
| value: 1377876574285
| |
| creation-method: WEBSITE
| |
| deactivation-date: null
| |
| last-modified-date:
| |
| value: 1696222687892
| |
| source: null
| |
| submission-date:
| |
| value: 1377876547621
| |
| verified-email: true
| |
| verified-primary-email: true
| |
| person:
| |
| emails:
| |
| email:
| |
| - created-date:
| |
| value: 1475857403840
| |
| email: aappling@usgs.gov
| |
| last-modified-date:
| |
| value: 1475857452483
| |
| path: null
| |
| primary: true
| |
| put-code: null
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| verified: true
| |
| visibility: public
| |
| last-modified-date:
| |
| value: 1475857452483
| |
| path: /0000-0003-3638-8572/email
| |
| name:
| |
| created-date:
| |
| value: 1460765093834
| |
| credit-name:
| |
| value: Alison P. Appling
| |
| family-name:
| |
| value: Appling
| |
| given-names:
| |
| value: Alison
| |
| last-modified-date:
| |
| value: 1678993036594
| |
| path: 0000-0003-3638-8572
| |
| source: null
| |
| visibility: public
| |
| researcher-urls:
| |
| last-modified-date:
| |
| value: 1678993077215
| |
| path: /0000-0003-3638-8572/researcher-urls
| |
| researcher-url:
| |
| - created-date:
| |
| value: 1678993077215
| |
| display-index: 1
| |
| last-modified-date:
| |
| value: 1678993077215
| |
| path: /0000-0003-3638-8572/researcher-urls/3720064
| |
| put-code: 3720064
| |
| source:
| |
| assertion-origin-client-id: null
| |
| assertion-origin-name: null
| |
| assertion-origin-orcid: null
| |
| source-client-id: null
| |
| source-name:
| |
| value: Alison P. Appling
| |
| source-orcid:
| |
| host: orcid.org
| |
| path: 0000-0003-3638-8572
| |
| uri: https://orcid.org/0000-0003-3638-8572
| |
| url:
| |
| value: https://www.usgs.gov/staff-profiles/alison-appling
| |
| url-name: Profile at USGS
| |
| visibility: public
| |
| USGS Staff Profile: | | USGS Staff Profile: |
| '@context': https://schema.org | | '@context': https://schema.org |