1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5031143096", "orcid": "https://orcid.org/0000-0002-5353-372X", "display_name": "Dimitrios Ntarlagiannis", "display_name_alternatives": [ "Dimitrios Ntarlagiannis", "D. Ntarlagiannis", "Ntarlagiannis Dimitrios" ], "works_count": 184, "cited_by_count": 2332, "summary_stats": { "2yr_mean_citedness": 3.6923076923076925, "h_index": 29, "i10_index": 52 },...") |
No edit summary |
||
Line 826: | Line 826: | ||
"id": "https://openalex.org/T11923", | "id": "https://openalex.org/T11923", | ||
"display_name": "Acid Mine Drainage Remediation and Biogeochemistry", | "display_name": "Acid Mine Drainage Remediation and Biogeochemistry", | ||
"value": 7e-05, | "value": "7e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2304", | "id": "https://openalex.org/subfields/2304", | ||
Line 1,323: | Line 1,323: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5031143096" | "_id": "https://openalex.org/A5031143096" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-5353-372X", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-5353-372X", | |||
"givenName": "Dimitrios", | |||
"familyName": "Ntarlagiannis", | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Aristotle University of Thessaloniki", | |||
"alternateName": "Geology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "37782" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Rutgers University Newark", | |||
"alternateName": "Earth and Environmental Sciences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "67206" | |||
} | |||
} | |||
], | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "Rutgers University Newark", | |||
"alternateName": "Earth and Environmental Sciences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "67206" | |||
} | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2118/223100-pa", | |||
"name": "Low Resistivity Pay Zone Detection in Hydrocarbon Formation: The Feasibility of the Spectral Induced Polarization Method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2118/223100-pa" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2118/217424-pa", | |||
"name": "Detection of Iron Disulfide Materials in Geological Porous Media Using Spectral Induced Polarization Method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2118/217424-pa" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jglr.2023.09.009", | |||
"name": "Unconsolidated sediment thickness mapping by waterborne geophysics along the Lake Michigan shoreline", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jglr.2023.09.009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-023-39095-z", | |||
"name": "Importance of subsurface water for hydrological response during storms in a post-wildfire bedrock landscape", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-023-39095-z" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006560", | |||
"name": "Microbially Induced Anaerobic Oxidation of Magnetite to Maghemite in a Hydrocarbon\u2010Contaminated Aquifer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006560" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10510375.1", | |||
"name": "Characterization and Monitoring for Different Types of Biochars", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10510375.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jenvman.2021.113944", | |||
"name": "Post-remediation geophysical assessment: Investigating long-term electrical geophysical signatures resulting from bioremediation at a chlorinated solvent contaminated site", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jenvman.2021.113944" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-030-80807-5_3", | |||
"name": "Geophysical Monitoring and Characterization of Biomineralization Processes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-030-80807-5_3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.chemosphere.2021.131390", | |||
"name": "Combining geophysics and material science for environmental remediation: Real-time monitoring of Fe-biochar arsenic wastewater treatment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.chemosphere.2021.131390" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jece.2021.105533", | |||
"name": "Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jece.2021.105533" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/feart.2021.757171", | |||
"name": "Editorial: Bridging Environmental Magnetism With Biogeophysics to Study Biogeochemical Processes of Today", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/feart.2021.757171" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.14358", | |||
"name": "Geophysical mapping of hyporheic processes controlled by sedimentary architecture within compound bar deposits", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.14358" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/feart.2021.598172", | |||
"name": "Methanogens and Their Syntrophic Partners Dominate Zones of Enhanced Magnetic Susceptibility at a Petroleum Contaminated Site", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/feart.2021.598172" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13762-020-03116-x", | |||
"name": "Removal of arsenic from contaminated groundwater using biochar: a technical review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13762-020-03116-x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/gji/ggaa510", | |||
"name": "Complex conductivity signatures of microbial induced calcite precipitation, field and laboratory scales", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/gji/ggaa510" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2020.124862", | |||
"name": "Electrical monitoring of saline tracers to reveal subsurface flow pathways in a flat ditch-drained field", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2020.124862" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Geophysical Methods for Contaminant Management: the Case for Biochar" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/fmicb.2020.01327", | |||
"name": "Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/fmicb.2020.01327" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/nsg.12076", | |||
"name": "Preliminary assessment on the application of biochar and spectral\u2010induced polarization for wastewater treatment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/nsg.12076" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2018jg004561", | |||
"name": "Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2018jg004561" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoleng.2018.11.010", | |||
"name": "Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoleng.2018.11.010" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/nsg.12077", | |||
"name": "Foreword to Special Issue: Recent Developments in Induced Polarization", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/nsg.12077" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/nsg.12072", | |||
"name": "Induced polarization applied to biogeophysics: recent advances and future prospects", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/nsg.12072" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jappgeo.2017.12.008", | |||
"name": "Geophysical methods for monitoring soil stabilization processes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jappgeo.2017.12.008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Non-Soil Biochar Applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "https://novapublishers.com/shop/non-soil-biochar-applications/" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The Untapped Potential of the Induced Polarization Method: Characterizing and Monitoring Hydrocarbon Contamination in Soils", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "https://www.eegs.org/fasttimes" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/iceg2017-059", | |||
"name": "Biochar as a remediation agent - the role of geophysical methods for characterization and monitoring", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/iceg2017-059" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/acs.est.7b02155", | |||
"name": "Evidence of Coupled Carbon and Iron Cycling at a Hydrocarbon-Contaminated Site from Time Lapse Magnetic Susceptibility", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/acs.est.7b02155" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "pmid", | |||
"value": "28872856" | |||
} | |||
], | |||
"sameAs": "https://pubmed.ncbi.nlm.nih.gov/28872856" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cageo.2016.08.016", | |||
"name": "A matlab-based frequency-domain electromagnetic inversion code (FEMIC) with graphical user interface", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cageo.2016.08.016" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-981-10-2410-8_5", | |||
"name": "Characterization and Monitoring of Solid Waste Disposal Sites Using Geophysical Methods: Current Applications and Novel Trends", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-981-10-2410-8_5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jg003596", | |||
"name": "Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jg003596" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3997/1873-0604.2017049", | |||
"name": "Specific polarizability of sand\u2013clay mixtures with varying ethanol concentration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3997/1873-0604.2017049" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The tides of Northern New Jersey residential prices since the crash and Sandy", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "http://www.rutgersrealestate.com/blog-re/bubble-or-surge-which-was-worse-for-housing/" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jappgeo.2016.01.017", | |||
"name": "Field-scale electrical geophysics over an olive oil mill waste deposition site: Evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jappgeo.2016.01.017" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/geo2015-0095.1", | |||
"name": "Relaxation time distribution obtained from a Debye decomposition of spectral induced polarization data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/geo2015-0095.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jappgeo.2016.01.014", | |||
"name": "Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid\u2013base titration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jappgeo.2016.01.014" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/ppp.1893", | |||
"name": "Surface Geophysical Methods for Characterising Frozen Ground in Transitional Permafrost Landscapes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/ppp.1893" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Electrical Geophysical Methods for Environmental Applications" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2016/5192691", | |||
"name": "Integrated Approaches to Soil Contamination Monitoring", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2016/5192691" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/int2015-0917-spseintro.1", | |||
"name": "Introduction to special section: Characterization and monitoring of subsurface contamination", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/int2015-0917-spseintro.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/acs.est.5b01327", | |||
"name": "Evaluation of Surface Sorption Processes Using Spectral Induced Polarization and a 22 Na Tracer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/acs.est.5b01327" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gwat.12356", | |||
"name": "Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gwat.12356" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/geo2013-0468.1", | |||
"name": "Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: Lessons from the Deepwater Horizon oil spill", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/geo2013-0468.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jappgeo.2013.08.011", | |||
"name": "Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jappgeo.2013.08.011" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jconhyd.2013.07.005", | |||
"name": "Complex resistivity signatures of ethanol biodegradation in porous media", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jconhyd.2013.07.005" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/geo2013-0085.1", | |||
"name": "Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/geo2013-0085.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jconhyd.2013.03.005", | |||
"name": "Complex resistivity signatures of ethanol in sand-clay mixtures.", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jconhyd.2013.03.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "pmid", | |||
"value": "23603518" | |||
} | |||
], | |||
"sameAs": "https://pubmed.ncbi.nlm.nih.gov/23603518" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jconhyd.2013.02.007", | |||
"name": "Laboratory SIP signatures associated with oxidation of disseminated metal sulfides", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jconhyd.2013.02.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "pmid", | |||
"value": "23531431" | |||
} | |||
], | |||
"sameAs": "https://pubmed.ncbi.nlm.nih.gov/23531431" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jconhyd.2012.10.011", | |||
"name": "Electrical signatures of ethanol\u2013liquid mixtures: Implications for monitoring biofuels migration in the subsurface", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jconhyd.2012.10.011" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Intelligent Spectral Induced Polarization Measurement Module" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/geo2012-0121.1", | |||
"name": "Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/geo2012-0121.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/geo2011-0407.1", | |||
"name": "Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/geo2011-0407.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2012wr011893", | |||
"name": "Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2012wr011893" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3997/1873-0604.", | |||
"name": "Spectral Induced Polarization (SIP) signatures of clayey soils containing toluene", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3997/1873-0604." | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/sssaj2012.0040", | |||
"name": "Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground-Penetrating Radar and Probing", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/sssaj2012.0040" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2011gl049271", | |||
"name": "Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2011gl049271" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.2207", | |||
"name": "The use of integrated sedimentological and geophysical methods in drumlin research - a case study of Pigeon Point, Clew Bay, Northwest Ireland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.2207" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2010wr009110", | |||
"name": "Use of electrical imaging and distributed temperature sensing methods to characterize surface water\u2013groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2010wr009110" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2009jg001157", | |||
"name": "Monitoring microbial sulfate reduction in porous media using multipurpose electrodes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2009jg001157" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/1.3471577", | |||
"name": "On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/1.3471577" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/1.3467759", | |||
"name": "Spectral induced polarization signatures of abiotic FeS precipitation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/1.3467759" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2009gl038695", | |||
"name": "Geoelectrical measurement and modeling of biogeochemical breakthrough behavior during microbial activity", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2009gl038695" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/1.3031514", | |||
"name": "SIP response of artificial biofilms", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/1.3031514" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2007jg000614", | |||
"name": "Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2007jg000614" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/1.2828977", | |||
"name": "Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/1.2828977" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2007gl031840", | |||
"name": "Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2007gl031840" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2007wr006090", | |||
"name": "Resistivity-based monitoring of biogenic gases in peat soils", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2007wr006090" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Bacteria may be wiring up the soil", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "http://dx.doi.org/10.1038/449388a" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2007gl030426", | |||
"name": "Microbial nanowires: Is the subsurface \u201chardwired\u201d?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2007gl030426" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1190/1.2187707", | |||
"name": "On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1190/1.2187707" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Investigating geophysical signatures of microbial cells, processes, and degradation: Implications for the geophysical monitoring of microbial activity and", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "http://adsabs.harvard.edu/abs/2006PhDT........52N" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/es0504035", | |||
"name": "Geophysical imaging of stimulated microbial biomineralization.", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "pmid", | |||
"value": "16245832" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/es0504035" | |||
} | |||
], | |||
"sameAs": "https://pubmed.ncbi.nlm.nih.gov/16245832" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2005jg000024", | |||
"name": "Low-frequency electrical response to microbial induced sulfide precipitation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2005jg000024" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2005gl024751", | |||
"name": "On the low-frequency electrical polarization of bacterial cells in sands", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2005gl024751" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Loop profile", | |||
"value": "774776" | |||
} | |||
} | } | ||
} | } |