1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5079622706", "orcid": "https://orcid.org/0000-0003-4007-1500", "display_name": "Jeremy C. Ely", "display_name_alternatives": [ "Jeremy C. Ely", "J. Ely", "J. C. Ely", "Jeremy Ely" ], "works_count": 126, "cited_by_count": 1672, "summary_stats": { "2yr_mean_citedness": 3.0, "h_index": 24, "i10_index": 35 }, "ids": { "openalex": "https://ope...") |
No edit summary |
||
Line 1,157: | Line 1,157: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5079622706" | "_id": "https://openalex.org/A5079622706" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-4007-1500", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-4007-1500", | |||
"givenName": "Jeremy", | |||
"familyName": "Ely", | |||
"address": { | |||
"addressCountry": "GB", | |||
"@type": "PostalAddress" | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3628", | |||
"name": "Behavioural tendencies of the last British\u2013Irish Ice Sheet revealed by data\u2013model comparison", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3628" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2024gl109154", | |||
"name": "Accelerating Glacier Area Loss Across the Andes Since the Little Ice Age", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2024gl109154" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-024-49269-y", | |||
"name": "Accelerating glacier volume loss on Juneau Icefield driven by hypsometry and melt-accelerating feedbacks", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-024-49269-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/cp-20-701-2024", | |||
"name": "A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/cp-20-701-2024" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-19220", | |||
"name": "The importance of bed roughness on ice sheet flow investigated using a full-Stokes ice flow model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-19220" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-16439", | |||
"name": "Contrasting regional ice margin dynamics of the Scandinavian Ice Sheet revealed by the landform record", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-16439" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-16440", | |||
"name": "Deglaciation pattern of the last Scandinavian Ice Sheet across Fennoscandia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-16440" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-6044", | |||
"name": "A landform-driven simulation of deglaciation of the Scandinavian Ice Sheet and the PalGlac project’s progress on data-modelling integration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-6044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-11008", | |||
"name": "Application of a new statistically rigorous comparison tool of observed and modelled flow directions of the last British-Irish ice sheet over time", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-11008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-11040", | |||
"name": "Insights into the LGM-to-present evolution of the Greenland Ice Sheet from a data evaluated ensemble of numerical model simulations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-11040" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-9010", | |||
"name": "Snowfall over the Andes: a convection-permitting climate model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-9010" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2022.107680", | |||
"name": "Tunnel valley formation beneath deglaciating mid-latitude ice sheets: Observations and modelling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2022.107680" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-17-4751-2023", | |||
"name": "Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-17-4751-2023" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5658", | |||
"name": "Assessing ice sheet models against the landform record: The Likelihood of Accordant Lineations Analysis (LALA) tool", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5658" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3523", | |||
"name": "Reconstruction of the palaeo\u2010sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3523" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/cp-2023-60", | |||
"name": "A Greenland-wide empirical reconstruction of paleo ice-sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/cp-2023-60" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu23-12767", | |||
"name": "Modelling the future of Nevado Coropuna (Peru), the world\u2019s largest tropical ice cap.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu23-12767" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1017/jog.2022.71", | |||
"name": "Effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1017/jog.2022.71" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5529", | |||
"name": "Numerical modelling of subglacial ribs, drumlins, herringbones, and mega\u2010scale glacial lineations reveals their developmental trajectories and transitions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5529" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-33-supplement", | |||
"name": "Supplementary material to \"Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century\"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-33-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-33", | |||
"name": "Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-33" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-5", | |||
"name": "Quantifying the Uncertainty in the Eurasian Ice-Sheet Geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.21203/rs.3.rs-2222758/v1", | |||
"name": "Continent-scale mapping reveals a rise in East Antarctic surface meltwater", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.21203/rs.3.rs-2222758/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-022-33310-z", | |||
"name": "60 million years of glaciation in the Transantarctic Mountains", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-022-33310-z" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5383", | |||
"name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5383" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/icg2022-157", | |||
"name": "Geomorphological constraints for tropical glacier retreat description and modelling: the MOTICE project in Nevado Coropuna and Quelcaya icecaps (Perú).", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/icg2022-157" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-7728", | |||
"name": "Further numerical simulations of subglacial bedform formation: Implications for interpreting palaeo-landscapes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-7728" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-8112", | |||
"name": "Investigating the Sensitivity of North Sea Glacial Isostatic Adjustment during the Last Interglacial to the Penultimate Deglaciation of Global Ice Sheets", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-8112" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-7694", | |||
"name": "Sensitivity of the Eurasian Ice Sheet: Improved model-data comparison routines", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-7694" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-11596", | |||
"name": "The effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-11596" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-4765", | |||
"name": "A new, multi-scale mapping approach for reconstructing the flow evolution of the Fennoscandian Ice Sheet using high-resolution digital elevation models.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-4765" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-2884", | |||
"name": "Monthly Antarctic-wide surface meltwater evolution between 2006 and 2021, and its links to climate", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-2884" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-777", | |||
"name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-777" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-15-5785-2021", | |||
"name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-15-5785-2021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2021-177", | |||
"name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2021-177" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2021-177-supplement", | |||
"name": "Supplementary material to "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2021-177-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3273", | |||
"name": "Exploring the extent to which fluctuations in ice\u2010rafted debris reflect mass changes in the source ice sheet: a model\u2013observation comparison using the last British\u2013Irish Ice Sheet", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3273" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3275", | |||
"name": "Retreat dynamics of the eastern sector of the British\u2013Irish Ice Sheet during the last glaciation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3275" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jf005755", | |||
"name": "Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jf005755" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu21-7431", | |||
"name": "Continent-wide bimonthly mapping of Antarctic surface meltwater using Google Earth Engine", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu21-7431" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu21-2183", | |||
"name": "Exploring mechanisms and rates of tunnel valley formation beneath deglaciating mid-latitude ice sheets using high-resolution 3D seismic data and numerical modelling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu21-2183" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-020-16685-9", | |||
"name": "Reply to: \u201cImpact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers\u201d by Rott et al.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-020-16685-9" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-11290", | |||
"name": "Estimating the style and duration of former glaciation in the mountains of Britain and Ireland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-11290" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-17484", | |||
"name": "Subglacial Drainage Routes of the Last Scandinavian Ice Sheet", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-17484" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.pgeola.2019.02.008", | |||
"name": "Book Review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.pgeola.2019.02.008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4688", | |||
"name": "The dynamics of mountain erosion: Cirque growth slows as landscapes age", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4688" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-019-12039-2", | |||
"name": "Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-019-12039-2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-12-933-2019", | |||
"name": "ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-12-933-2019" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-2018-139-rc2", | |||
"name": "Review of Gowan et al. eology datasets of North America for use with ice sheet models", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-2018-139-rc2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-12-3635-2018", | |||
"name": "Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-12-3635-2018" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2018.06.009", | |||
"name": "Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2018.06.009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2018-116", | |||
"name": "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2018-116" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2018-116-supplement", | |||
"name": "Supplementary material to "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2018-116-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12-ac1", | |||
"name": "Author response to reviewers", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12-ac1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4241", | |||
"name": "Using the size and position of drumlins to understand how they grow, interact and evolve", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4241" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12", | |||
"name": "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12-supplement", | |||
"name": "Supplementary material to "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4192", | |||
"name": "Spatial organization of drumlins", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4192" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jf004154", | |||
"name": "The periodic topography of ice stream beds: Insights from the Fourier spectra of mega\u2010scale glacial lineations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jf004154" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4044", | |||
"name": "Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaci\u00e4ren", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84988564500" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4044" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jf004071", | |||
"name": "Insights on the formation of longitudinal surface structures on ice sheets from analysis of their spacing, spatial distribution, and relationship to ice thickness and flow", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jf004071" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/nature22049", | |||
"name": "Widespread movement of meltwater onto and across Antarctic ice shelves", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nature22049" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.geomorph.2016.11.018", | |||
"name": "ACME, a GIS tool for Automated Cirque Metric Extraction", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geomorph.2016.11.018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84999663665" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.earscirev.2016.11.007", | |||
"name": "Devising quality assurance procedures for assessment of legacy geochronological data relating to deglaciation of the last British-Irish Ice Sheet", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.earscirev.2016.11.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85001949426" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.pgeola.2016.06.004", | |||
"name": "Book Review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.pgeola.2016.06.004" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.geomorph.2016.01.001", | |||
"name": "Do subglacial bedforms comprise a size and shape continuum?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geomorph.2016.01.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84953897110" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/ncomms10723", | |||
"name": "Ice stream motion facilitated by a shallow-deforming and accreting bed", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959016611" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/ncomms10723" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2016.1234981", | |||
"name": "The glacial geomorphology of the western cordilleran ice sheet and Ahklun ice cap, Southern Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2016.1234981" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84989234966" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2015.01.030", | |||
"name": "Discriminating between subglacial and proglacial lake sediments: an example from the D\u00e4nischer Wohld Peninsula, northern Germany", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84922695224" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2015.01.030" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2015.1010617", | |||
"name": "Flow-stripes and foliations of the Antarctic ice sheet", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2015.1010617" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84953357860" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2014.957251", | |||
"name": "Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84938420627" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2014.957251" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.3532", | |||
"name": "Size, shape and spatial arrangement of mega-scale glacial lineations from a large and diverse dataset", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84906781840" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.3532" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3189/2014jog14j110", | |||
"name": "Looking through drumlins: testing the application of ground-penetrating radar", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84926674982" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3189/2014jog14j110" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"url": "https://www.sheffield.ac.uk/geography/staff/jeremy_ely", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Loop profile", | |||
"value": "311469" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "56040812500" | |||
} | |||
] | |||
} | } | ||
} | } |