1,477,004
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5078013390", "orcid": "https://orcid.org/0000-0002-1096-2436", "display_name": "Edward A. G. Schuur", "display_name_alternatives": [ "E. A. Schuur", "Edward Ag Schuur", "Edward A.G Schuur", "E. a G Schuur", "Edward A. Schuur", "E. A. G Schuur", "Edward Schuur", "Ted A.G. Schuur", "Edward. A. G. Schuur", "Edward A. G. Schuur", "E. Schuur",...") |
No edit summary |
||
Line 1,316: | Line 1,316: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5078013390" | "_id": "https://openalex.org/A5078013390" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-1096-2436", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-1096-2436", | |||
"givenName": "Edward", | |||
"familyName": "Schuur", | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "Northern Arizona University", | |||
"alternateName": "Center for Ecosystem Science & Society; Department of Biological Sciences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/0272j5188" | |||
} | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ad50ed", | |||
"name": "Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ad50ed" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-024-02001-6", | |||
"name": "Russian collaboration loss risks permafrost carbon emissions network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-024-02001-6" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rsta.2022.0201", | |||
"name": "Ecosystem and soil respiration radiocarbon detects old carbon release as a fingerprint of warming and permafrost destabilization with climate change", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rsta.2022.0201" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2172/2204021", | |||
"name": "Coupled Long-Term Experiment and Model Investigation of the Differential Response of Plants and Soil Microbes in a Changing Permafrost Tundra Ecosystem", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2172/2204021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022jg007290", | |||
"name": "Organic\u2010Matter Accumulation and Degradation in Holocene Permafrost Deposits Along a Central Alaska Hillslope", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022jg007290" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s43247-023-00740-6", | |||
"name": "Evidence for late winter biogeochemical connectivity in permafrost soils", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s43247-023-00740-6" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-022-01566-4", | |||
"name": "Only halving emissions by 2030 can minimize risks of crossing cryosphere thresholds", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-022-01566-4" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022gb007403", | |||
"name": "Permafrost Landscape History Shapes Fluvial Chemistry, Ecosystem Carbon Balance, and Potential Trajectories of Future Change", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022gb007403" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021gb007105", | |||
"name": "Seasonal Changes in Hydrology and Permafrost Degradation Control Mineral Element\u2010Bound DOC Transport From Permafrost Soils to Streams", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021gb007105" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006376", | |||
"name": "Experimental Soil Warming and Permafrost Thaw Increase CH4 Emissions in an Upland Tundra Ecosystem", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006376" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jg006000", | |||
"name": "Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jg006000" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jg006218", | |||
"name": "Projecting Permafrost Thaw of Sub\u2010Arctic Tundra With a Thermodynamic Model Calibrated to Site Measurements", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jg006218" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jg006044", | |||
"name": "Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the Atmosphere Over 15 Years of Measurements", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jg006044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15481", | |||
"name": "Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10\u00a0years of experimental permafrost warming", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15481" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020ms002105", | |||
"name": "Full Implementation of Matrix Approach to Biogeochemistry Module of CLM5", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020ms002105" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41561-019-0526-0", | |||
"name": "Carbon release through abrupt permafrost thaw", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41561-019-0526-0" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.1901307116", | |||
"name": "Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.1901307116" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41598-018-32229-0", | |||
"name": "Soil resources and element stocks in drylands to face global issues", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41598-018-32229-0" | |||
} | |||
} | |||
] | |||
} | |||
} | } | ||
} | } |