1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5055894630", "orcid": "https://orcid.org/0000-0001-8427-206X", "display_name": "Justin B. Ries", "display_name_alternatives": [ "J. Ries", "J. Scott Ries", "JJ Ries", "Justin Ries", "Justin B. Ries", "J. B. Ries", "Justin Baker Ries" ], "works_count": 156, "cited_by_count": 5731, "summary_stats": { "2yr_mean_citedness": 2.04, "h_index": 35,...") |
No edit summary |
||
Line 1,319: | Line 1,319: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5055894630" | "_id": "https://openalex.org/A5055894630" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0001-8427-206X", | |||
"mainEntityOfPage": "https://orcid.org/0000-0001-8427-206X", | |||
"givenName": "Justin", | |||
"familyName": "Ries", | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2023pa004746", | |||
"name": "Century\u2010Long Records of Sedimentary Input on a Caribbean Reef From Coral Ba/Ca Ratios", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2023pa004746" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/lno.12474", | |||
"name": "Linear extension and calcification rates in a cold\u2010water, crustose coralline alga are modulated by temperature, light, and salinity", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/lno.12474" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/lno.12153", | |||
"name": "Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/lno.12153" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021gc009942", | |||
"name": "Cessation of Hardground Accretion by the Cold\u2010Water Coralline Algae Clathromorphum Compactum and Clathromorphum Nereostratum Predicted Within Two Centuries", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021gc009942" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/lol2.10214", | |||
"name": "Ocean acidification alters the diversity and structure of oyster associated microbial communities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/lol2.10214" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/lno.11863", | |||
"name": "Exposure duration modulates the response of Caribbean corals to global change stressors", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/lno.11863" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020gl091499", | |||
"name": "Ocean Acidification Reduces Skeletal Density of Hardground\u2010Forming High\u2010Latitude Crustose Coralline Algae", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020gl091499" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020gc009180", | |||
"name": "Juvenile Eastern Oysters More Resilient to Extreme Ocean Acidification than Their Mud Crab Predators", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020gc009180" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/sciadv.aba9958", | |||
"name": "Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/sciadv.aba9958" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/science.aav7515", | |||
"name": "Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/science.aav7515" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2020.06.19.161711", | |||
"name": "Exposure duration modulates the response of Caribbean corals to global change stressors", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2020.06.19.161711" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/sciadv.aax1314", | |||
"name": "Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/sciadv.aax1314" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rspb.2018.2840", | |||
"name": "Common Caribbean corals exhibit highly variable responses to future acidification and warming", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rspb.2018.2840" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-018-04463-7", | |||
"name": "A coastal coccolithophore maintains pH homeostasis and switches carbon sources in response to ocean acidification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-018-04463-7" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/298158", | |||
"name": "Nearshore corals on the Mesoamerican Barrier Reef System on pace to cease growing as soon as year 2110", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/298158" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/fmars.2016.00112", | |||
"name": "Thermal and pCO2 Stress Elicit Divergent Transcriptomic Responses in a Resilient Coral", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/fmars.2016.00112" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.chemgeo.2015.06.030", | |||
"name": "Impact of atmospheric pCO2, seawater temperature, and calcification rate on the \u03b418O and \u03b413C composition of echinoid calcite (Echinometra viridis)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.chemgeo.2015.06.030" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/12-1950.1", | |||
"name": "From the Arctic to the Antarctic: The major, minor, and trace elemental composition of echinoderm skeletons", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/12-1950.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Ch.3: Biological responses to ocean acidification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "isbn", | |||
"value": "9788279710820" | |||
}, | |||
"sameAs": "https://www.worldcat.org/isbn/9788279710820" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Methods and compositions using calcium carbonate (B)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "pat", | |||
"value": "8114214" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Methods and compositions using calcium carbonate (C)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "pat", | |||
"value": "8137455" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.gca.2011.04.025", | |||
"name": "A physicochemical framework for interpreting the biological calcification response to CO2\u2010 induced ocean acidification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.gca.2011.04.025" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Methods and compositions using calcium carbonate (A)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "pat", | |||
"value": "8062418" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Shell\u2010shocked: How different creatures deal with an acidifying ocean" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Experiments on the effect of secular variation in seawater Mg/Ca (calcite and aragonite seas) on calcareous biomineralization." | |||
} | |||
] | |||
}, | |||
"url": "http://nuweb2.neu.edu/rieslab/", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "B-8391-2017" | |||
} | |||
} | } | ||
} | } |