1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5014096050", "orcid": "https://orcid.org/0000-0001-8060-9841", "display_name": "Pardhasaradhi Teluguntla", "display_name_alternatives": [ "Pardhasaradhi Teluguntla", "P. Teluguntla", "Pardhasaradhi Gangadhara Rao", "Pardharsadhi Teluguntla", "Pardhasaradhi G. Teluguntla" ], "works_count": 47, "cited_by_count": 1960, "summary_stats": { "2yr_mean_citedness": 5...") |
No edit summary |
||
Line 965: | Line 965: | ||
"id": "https://openalex.org/T10766", | "id": "https://openalex.org/T10766", | ||
"display_name": "Urban Heat Islands and Mitigation Strategies", | "display_name": "Urban Heat Islands and Mitigation Strategies", | ||
"value": 1e-05, | "value": "1e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2305", | "id": "https://openalex.org/subfields/2305", | ||
Line 1,279: | Line 1,279: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5014096050" | "_id": "https://openalex.org/A5014096050" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0001-8060-9841", | |||
"mainEntityOfPage": "https://orcid.org/0000-0001-8060-9841", | |||
"givenName": "Pardhasaradhi", | |||
"familyName": "Teluguntla", | |||
"affiliation": { | |||
"@type": "Organization", | |||
"@id": "grid.426886.6", | |||
"name": "Bay Area Environmental Research Institute" | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs15194894", | |||
"name": "Crop Water Productivity from Cloud-Based Landsat Helps Assess California\u2019s Water Savings", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs15194894" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Hyperspectral Narrowband Data Propel Gigantic Leap in the Earth Remote Sensing" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Impact of flooded rice paddy on remotely sensed evapotranspiration in the Krishna River basin, India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2019.1651912", | |||
"name": "A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071647372" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2019.1651912" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2019.1690780", | |||
"name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075351890" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2019.1690780" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", | |||
"name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051136400" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2018.07.017" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2018.1482855", | |||
"name": "Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85048044474" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2018.1482855" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", | |||
"name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2017.01.019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014705870" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9101065", | |||
"name": "Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9101065" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85032864011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2016.1267269", | |||
"name": "Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000\u20132015) data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2016.1267269" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85008422868" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2016.1168489", | |||
"name": "Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250\u2005m time-series data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84965031268" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2016.1168489" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Global food security support analysis data at nominal 1 km (GFSAD1km) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051140400" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/ictsd.2015.7095869", | |||
"name": "Hot spot analysis using NDVI data for impact assessment of watershed development", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84931033860" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/ictsd.2015.7095869" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Hyperspectral remote sensing for terrestrial applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84971639839" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Inland valley wetland cultivation and preservation for africa\u2019s green and blue revolution using multisensor remote sensing", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85054268718" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs70708858", | |||
"name": "Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs70708858" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84937899618" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "HYPERSPECTRAL REMOTE SENSING OF VEGETATION AND AGRICULTURAL CROPS" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11269-014-0567-5", | |||
"name": "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11269-014-0567-5" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84897573872" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/vzj2012.0118", | |||
"name": "Multidecadal trend of basin-scale evapotranspiration estimated using AVHRR data in the Krishna River Basin, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84881567310" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/vzj2012.0118" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India)" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Analysis of spectral measurements in paddy rice field: Implications for land use classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84858853823" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Impact of spatial scale on remotely sensed evapotranspiration estimates from heterogeneous land surfaces", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84863418522" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agwat.2010.01.027", | |||
"name": "Mapping agricultural responses to water supply shocks in large irrigation systems, southern India", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agwat.2010.01.027" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1061/(asce)ir.1943-4774.0000225", | |||
"name": "Farmers\u2019 Adaptation and Regional Land-Use Changes in Irrigation Systems under Fluctuating Water Supply, South India", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1061/(asce)ir.1943-4774.0000225" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Water Scarcity Effects on Equitable Water Distribution and Land Use in a Major Irrigation Project\u2014Case Study in India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3910/2009.111", | |||
"name": "Closing of the Krishna Basin: Irrigation, Streamflow Depletion and Macroscale Hydrology.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3910/2009.111" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "55135808700" | |||
} | |||
} | } | ||
} | } |