1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5052769176", "orcid": "https://orcid.org/0000-0001-7031-9808", "display_name": "Jonathan A. O\u2019Donnell", "display_name_alternatives": [ "J. A. Odonnell", "J. A. O\u2019Donnell", "J. O\u2019donnell", "Jonathan A. O`Donnell", "Jonathan O\u2019Donnell", "Jonathan O'Donnell", "J. A. O'Donnell", "J. O'Donnell", "Jennifer E. D. O'Donnell", "Jonathan A....") |
No edit summary |
||
Line 956: | Line 956: | ||
"id": "https://openalex.org/T10995", | "id": "https://openalex.org/T10995", | ||
"display_name": "Anaerobic Methane Oxidation and Gas Hydrates", | "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", | ||
"value": 2e-05, | "value": "2e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2304", | "id": "https://openalex.org/subfields/2304", | ||
Line 1,287: | Line 1,287: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5052769176" | "_id": "https://openalex.org/A5052769176" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0001-7031-9808", | |||
"mainEntityOfPage": "https://orcid.org/0000-0001-7031-9808", | |||
"givenName": "Jonathan", | |||
"familyName": "O'Donnell", | |||
"address": { | |||
"addressCountry": "US", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Elizabethtown College", | |||
"alternateName": "Biology Department", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "3191" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Alaska Fairbanks", | |||
"alternateName": "Department of Biology and Wildlife", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "11414" | |||
} | |||
} | |||
], | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "National Park Service", | |||
"alternateName": "Arctic Network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "7133" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "grid.298900.a", | |||
"name": "American Geophysical Union" | |||
} | |||
], | |||
"@reverse": { | |||
"funder": [ | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000203", | |||
"name": "U.S. Geological Survey", | |||
"alternateName": "Beaver range expansion into arctic tundra: quantifying effects on stream water quality in Alaska\u2019s arctic national parks" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100007516", | |||
"name": "National Park Service", | |||
"alternateName": "Testing the \u2018standstill hypothesis\u201d versus the \u2018arctic tundra fire hypothesis\u2019 using the longest known sedimentary records from Seward Peninsula, Alaska" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000085", | |||
"name": "Directorate for Geosciences", | |||
"alternateName": "Collaborative Research: Sea-level rise, coastal wetland expansion, and proglacial lake contributions to abrupt increases in northern atmospheric CH4 during the last deglaciation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "1903735" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000085", | |||
"name": "Directorate for Geosciences", | |||
"alternateName": "Collaborative Research: Arctic Stream Networks as Nutrient Sensors in Permafrost Ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "1916565" | |||
} | |||
} | |||
], | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.orggeochem.2019.103924", | |||
"name": "Group I alkenones and Isochrysidales in the world\u2019s largest maar lakes and their potential paleoclimate applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.orggeochem.2019.103924" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10021-019-00413-6", | |||
"name": "Permafrost Hydrology Drives the Assimilation of Old Carbon by Stream Food Webs in the Arctic", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10021-019-00413-6" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-15-5287-2018", | |||
"name": "Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-15-5287-2018" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Potential effects of permafrost thaw on arctic river ecosystems" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Chemical composition of large lakes in Alaska\u2019s Arctic Network: 2013-2014" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Chemical composition of rivers in Alaska's Arctic Network, 2013-2014" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Uranium isotopes and dissolved organic carbon in loess permafrost: modeling the age of ancient ice" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Snow, Permafrost, Ice Cover, and Climate Change" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Expert assessment of vulnerability of permafrost carbon to climate change" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Field information links permafrost carbon to physical vulnerabilities of thawing" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Soil Data for a Collapse-Scar Bog Chronosequence in Koyukuk Flats National Wildlife Refuge, Alaska, 2008" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Spatiotemporal analysis of black spruce forest soils and implications for the fate of C" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Study of the Ice-rich Syngenetic Permafrost for Road Design (Interior Alaska)" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Soil carbon distribution in Alaska in relation to soil-forming factors" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Soil physical, chemical and gas-flux characterization from Picea mariana stands near Erickson Creek, Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Water and heat transport in boreal soils: Implications for soil response to climate change" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance, and permafrost thaw in a black spruce ecosystem" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Geotechnical investigations for the Dalton Highway innovation project as a case study of the ice-rich syngenetic permafrost" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Resilience and vulnerability of permafrost to climate change" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effects of permafrost degradation on soil carbon dynamics in Alaska's boreal region" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effects of permafrost degradation on soil carbon dynamics in Alaska's boreal region" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Interactive effects of fire, soil climate, and moss on CO 2 fluxes in black spruce ecosystems of interior Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Interactive effects of fire, soil climate, and moss on CO 2 fluxes in black spruce ecosystems of interior Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Precipitation control over inorganic nitrogen import--export budgets across watersheds: a synthesis of long-term ecological research" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Nitrogen retention in the riparian zone of watersheds underlain by discontinuous permafrost" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Effects of ammonia on juvenile unionid mussels (Lampsilis cardium) in laboratory sediment toxicity tests" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Effects of pore-water ammonia on in situ survival and growth of juvenile mussels (; Lampsilis cardium); in the St. Croix Riverway, Wisconsin, USA" | |||
} | |||
] | |||
}, | |||
"url": [ | |||
"https://scholar.google.com/citations?user=y_DgrcQAAAAJ&hl=en", | |||
"https://www.nps.gov/articles/jonathan-o-donnell-ecologist.htm" | |||
], | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Loop profile", | |||
"value": "630167" | |||
} | |||
} | } | ||
} | } |