1,461,255
edits
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5070843904", "orcid": "https://orcid.org/0000-0002-4102-1137", "display_name": "Tsegaye Tadesse", "display_name_alternatives": [ "K. Gopal", "T. Tadesse", "Tadesse Tsegaye", "K. V. N. Gopal", "Tsegaye Tadesse" ], "works_count": 185, "cited_by_count": 5029, "summary_stats": { "2yr_mean_citedness": 4.0588235294117645, "h_index": 38, "i10_index": 67...") |
No edit summary |
||
Line 720: | Line 720: | ||
"id": "https://openalex.org/T10330", | "id": "https://openalex.org/T10330", | ||
"display_name": "Hydrological Modeling and Water Resource Management", | "display_name": "Hydrological Modeling and Water Resource Management", | ||
"value": 9e-05, | "value": "9e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2312", | "id": "https://openalex.org/subfields/2312", | ||
Line 1,272: | Line 1,272: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5070843904" | "_id": "https://openalex.org/A5070843904" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-4102-1137", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-4102-1137", | |||
"givenName": "Tsegaye", | |||
"familyName": "Tadesse", | |||
"address": { | |||
"addressCountry": "US", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "International Space University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "113957" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Nebraska-Lincoln", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "14719" | |||
} | |||
} | |||
], | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "University of Nebraska-Lincoln", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "14719" | |||
} | |||
}, | |||
"@reverse": { | |||
"funder": { | |||
"@type": "Organization", | |||
"name": "National Aeronautics and Space Administration", | |||
"alternateName": "FOOD PRODUCTION AND WATER SCARCITY ARE LONG-STANDING ISSUES IN AFRICA, EXACERBATED BY PERIODIC DROUGHTS AND FLOODS. AS THE PATTERNS OF DROUGHTS AND FLOODS EVOLVE UNDER A CHANGING CLIMATE SYSTEM, IT IS CRITICAL THAT WE IMPROVE OUR UNDERSTANDING OF WHAT DRI", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "3997" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "nnx14ad30g" | |||
} | |||
] | |||
}, | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/atmos15080974", | |||
"name": "Weather Research and Forecasting Model (WRF) Sensitivity to Choice of Parameterization Options over Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/atmos15080974" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/agronomy14071561", | |||
"name": "Optimizing Cover Crop Management in Eastern Nebraska: Insights from Crop Simulation Modeling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/agronomy14071561" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00704-024-05038-x", | |||
"name": "Assessment of agricultural drought status using visible infrared imaging radiometer suite land products", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00704-024-05038-x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/z8y33-jf335", | |||
"name": "Relative and Combined Impacts of Climate and Land Use/Cover Change for the Streamflow Variability in the Baro River Basin (BRB)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/z8y33-jf335" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/8y14j-rsy68", | |||
"name": "Relative and Combined Impacts of Climate and Land Use/Cover Change for the Streamflow Variability in the Baro River Basin (BRB)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/8y14j-rsy68" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/earth5020008", | |||
"name": "Relative and Combined Impacts of Climate and Land Use/Cover Change for the Streamflow Variability in the Baro River Basin (BRB)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/earth5020008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/isprs-archives-xlviii-4-w9-2024-357-2024", | |||
"name": "ESTIMATION OF SUGARCANE YIELD USING MULTI-TEMPORAL SENTINEL 2 SATELLITE IMAGERY AND RANDOM FOREST REGRESSION", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/isprs-archives-xlviii-4-w9-2024-357-2024" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2023.2279802", | |||
"name": "Assessment of an evapotranspiration algorithm accounting for land cover types and photosynthetic perspectives using remote sensing images", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2023.2279802" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/19479832.2022.2055157", | |||
"name": "Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/19479832.2022.2055157" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/w14223776", | |||
"name": "The Sensitivity of Meteorological Dynamics to the Variability in Catchment Characteristics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/w14223776" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints202202.0239.v1", | |||
"name": "Weather Research and Forecasting Model Sensitivity to Choice of Parameterization over Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints202202.0239.v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2022.2027547", | |||
"name": "Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2022.2027547" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s41748-021-00245-2", | |||
"name": "Evaluation of Remotely Sensed Precipitation Estimates from the NASA POWER Project for Drought Detection Over Jordan", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s41748-021-00245-2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/w13172411", | |||
"name": "Evaluation of Regional Climate Models (RCMs) Using Precipitation and Temperature-Based Climatic Indices: A Case Study of Florida, USA", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/w13172411" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs13061210", | |||
"name": "Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs13061210" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jd033228", | |||
"name": "A Satellite\u2010Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jd033228" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/hess-25-565-2021", | |||
"name": "Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/hess-25-565-2021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12213605", | |||
"name": "Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12213605" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/16070658.2019.1612652", | |||
"name": "Nutritional status of children aged 0\u201360 months in two drought-prone areas of Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/16070658.2019.1612652" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints202009.0673.v1", | |||
"name": "Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints202009.0673.v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/hess-2020-385", | |||
"name": "Flash drought onset over the Contiguous United States: Sensitivity of inventories and trends to quantitative definitions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/hess-2020-385" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/hess-2020-385-supplement", | |||
"name": "Supplementary material to "Flash drought onset over the Contiguous United States: Sensitivity of inventories and trends to quantitative definitions"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/hess-2020-385-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12132138", | |||
"name": "Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12132138" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020ef001487", | |||
"name": "Resilience to Large, \u201cCatastrophic\u201d Wildfires in North America's Grassland Biome", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020ef001487" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12132091", | |||
"name": "Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12132091" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/s20113282", | |||
"name": "Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/s20113282" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12030444", | |||
"name": "Agricultural Drought Assessment in East Asia Using Satellite-Based Indices", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12030444" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.scitotenv.2019.07.342", | |||
"name": "Urban drought challenge to 2030 sustainable development goals", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.scitotenv.2019.07.342" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2018.1552508", | |||
"name": "Developing a satellite-based combined drought indicator to monitor agricultural drought: a case study for Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2018.1552508" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs11040371", | |||
"name": "Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs11040371" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs11020125", | |||
"name": "Soil Moisture Monitoring Using Remote Sensing Data and a Stepwise-Cluster Prediction Model: The Case of Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs11020125" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.10.006", | |||
"name": "Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.10.006" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.fcr.2018.09.001", | |||
"name": "Crop model and weather data generation evaluation for conservation agriculture in Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.fcr.2018.09.001" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/su10093268", | |||
"name": "Empowerment and Tech Adoption: Introducing the Treadle Pump Triggers Farmers\u2019 Innovation in Eastern Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/su10093268" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints201808.0261.v1", | |||
"name": "Empowerment and Tech Adoption: Introducing the Treadle Pump Triggers Farmers\u2019 Innovation in Eastern Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints201808.0261.v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2017.1421797", | |||
"name": "Vegetation condition prediction for drought monitoring in pastoralist areas: a case study in Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2017.1421797" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.04.048", | |||
"name": "Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.04.048" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints201805.0108.v1", | |||
"name": "Empowerment and Tech Adoption: Introducing the Treadle Pump Triggers Farmers\u2019 Innovation in Eastern Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints201805.0108.v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/geosciences8040135", | |||
"name": "Downscaling Africa\u2019s Drought Forecasts through Integration of Indigenous and Scientific Drought Forecasts Using Fuzzy Cognitive Maps", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/geosciences8040135" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/amt-11-1921-2018", | |||
"name": "Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/amt-11-1921-2018" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/atmos9030112", | |||
"name": "Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/atmos9030112" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2017.1407047", | |||
"name": "Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2017.1407047" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/geosciences8030081", | |||
"name": "Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/geosciences8030081" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/amt-2017-294", | |||
"name": "Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/amt-2017-294" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/info8030079", | |||
"name": "Information Mining from Heterogeneous Data Sources: A Case Study on Drought Predictions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/info8030079" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9070669", | |||
"name": "Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9070669" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2017.1286728", | |||
"name": "Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2017.1286728" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.2241032", | |||
"name": "Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.2241032" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/bams-d-15-00269.1", | |||
"name": "Linking Seasonal Predictions into Decision-making and Disaster Management in the Greater Horn of Africa", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/bams-d-15-00269.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agwat.2015.06.029", | |||
"name": "Drought hazard assessment in the context of climate change for South Korea", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84937564462" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agwat.2015.06.029" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/02626667.2015.1032291", | |||
"name": "Spatio-temporal assessment of meteorological drought under the influence of varying record length: the case of Upper Blue Nile Basin, Ethiopia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84937836764" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/02626667.2015.1032291" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jag.2015.03.006", | |||
"name": "Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84943600332" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jag.2015.03.006" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/bams-d-14-00280.1", | |||
"name": "Participatory Research Workshop on Seasonal Prediction of Hydroclimatic Extremes in the Greater Horn of Africa", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84942893076" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/bams-d-14-00280.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5389/ksae.2015.57.4.001", | |||
"name": "\uc2dd\uc0dd\uac00\ubb44\ubc18\uc751\uc9c0\uc218 (VegDRI)\ub97c \ud65c\uc6a9\ud55c \uc704\uc131\uc601\uc0c1 \uae30\ubc18 \uac00\ubb44 \ud3c9\uac00", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5389/ksae.2015.57.4.001" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/jamc-d-14-0048.1", | |||
"name": "Assessing the Vegetation Condition Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923005478" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/jamc-d-14-0048.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs70100951", | |||
"name": "Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs70100951" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2013.2279020", | |||
"name": "Drought Prediction System for Improved Climate Change Mitigation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2013.2279020" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84896394601" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2013wr014281", | |||
"name": "Satellite-based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2013wr014281" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84895775109" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1504/ijsss.2014.062438", | |||
"name": "Improving drought risk modelling: using multiple periods of satellite data with ensembles of data mining algorithms", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1504/ijsss.2014.062438" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/wict.2012.6409074", | |||
"name": "Drought information mining from satellite images for improved climate change mitigation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/wict.2012.6409074" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873397949" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.48.3.432", | |||
"name": "Assessment of Vegetation Response to Drought in Nebraska Using Terra-MODIS Land Surface Temperature and Normalized Difference Vegetation Index", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.48.3.432" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80052682768" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-642-22315-0_11", | |||
"name": "Drought Monitoring in Food-Insecure Areas of Ethiopia by Using Satellite Technologies", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-642-22315-0_11" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.47.1.25", | |||
"name": "The Vegetation Outlook (VegOut): A New Method for Predicting Vegetation Seasonal Greenness", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.47.1.25" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77949899286" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10584-009-9705-0", | |||
"name": "Potential extents for ENSO-driven hydrologic drought forecasts in the United States", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10584-009-9705-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77955050840" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-642-04747-3_11", | |||
"name": "Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-71049155492" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-642-04747-3_11" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4018/978-1-59904-657-0.ch015", | |||
"name": "The Application of Data Mining for Drought Monitoring and Prediction", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4018/978-1-59904-657-0.ch015" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The impact of weather extremes on agricultural production methods: Does drought increase adoption of conservation tillage practices?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-76649112737" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1477-8947.2008.00211.x", | |||
"name": "The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1477-8947.2008.00211.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-56349130249" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1061/40976(316)371", | |||
"name": "Climate Impacts on Hydrology in the Central United States: Application to Forecast Capability in the Republican River Basin", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1061/40976(316)371" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79251536215" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.45.1.16", | |||
"name": "The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-41449106514" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.45.1.16" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4018/978-1-59904-283-1.ch015", | |||
"name": "The application of data mining for drought monitoring and prediction", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84898587099" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4018/978-1-59904-283-1.ch015" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/icdmw.2007.36", | |||
"name": "The Vegetation Outlook (VegOut): A New Tool for Providing Outlooks of General Vegetation Conditions Using Data Mining Techniques", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-49549087707" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/icdmw.2007.36" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4018/978-1-59140-789-8.ch183", | |||
"name": "Modern Drought Monitoring Tool for Decision Support System", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4018/978-1-59140-789-8.ch183" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2005.02.003", | |||
"name": "A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-20444441158" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2005.02.003" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/jcli3346.1", | |||
"name": "Discovering Associations between Climatic and Oceanic Parameters to Monitor Drought in Nebraska Using Data-Mining Techniques", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/jcli3346.1" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-20544434449" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1023/b:nhaz.0000035020.76733.0b", | |||
"name": "Drought Monitoring Using Data Mining Techniques: A Case Study for Nebraska, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1023/b:nhaz.0000035020.76733.0b" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3342922295" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Recent advances in drought monitoring", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-2442490819" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Recent advances in drought monitoring", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-2442503409" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1145/602421.602442", | |||
"name": "Geospatial decision support for drought risk management", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1145/602421.602442" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Geospatial decision support for drought risk management", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037649025" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/3-540-48050-1_47", | |||
"name": "Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/3-540-48050-1_47" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Discovering sequential association rules with constraints and time lags in multiple sequences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84884622937" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Discovering representative episodal association rules from event sequences using frequent closed episode sets and event constraints", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037986782" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4018/9781599046570.ch015", | |||
"name": "The Application of Data Mining for Drought Monitoring and Prediction", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4018/9781599046570.ch015" | |||
} | |||
} | |||
] | |||
}, | |||
"url": "http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=232", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "O-7792-2015" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "6603979433" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "SciProfiles", | |||
"value": "94604" | |||
} | |||
] | |||
} | } | ||
} | } |