1,461,255
edits
No edit summary |
No edit summary |
||
Line 1,303: | Line 1,303: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5071700332" | "_id": "https://openalex.org/A5071700332" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-7902-2178", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-7902-2178", | |||
"name": "Christopher Parry Jewell", | |||
"givenName": "Chris", | |||
"familyName": "Jewell", | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "Lancaster University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/04f2nsd36" | |||
} | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jtbi.2020.110380", | |||
"name": "Anticipating future learning affects current control decisions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85089137762" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jtbi.2020.110380" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "14ebd605-663a-4631-803b-e46fd66a6dc1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.2002731117", | |||
"name": "Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post-kala-azar dermal leishmaniasis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.2002731117" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "44b9a9c3-9dfb-4921-8c61-032ca0ed04e6" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85092904441" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijerph17197243", | |||
"name": "Measuring air quality for advocacy in Africa (MA3)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "2780efce-9831-4da7-a078-889ec42c21e3" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85092066544" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijerph17197243" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.12688/wellcomeopenres.15719.2", | |||
"name": "Estimating the burden of antimicrobial resistance in Malawi: protocol for a prospective observational study of the morbidity, mortality and economic cost of third-generation cephalosporin resistant bloodstream infection [version 2; peer review: 2 approved]", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "pmid", | |||
"value": "32566760" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "cec5ffa7-048b-4bf2-a38c-118022e1abe4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.12688/wellcomeopenres.15719.2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85087478702" | |||
} | |||
], | |||
"sameAs": "https://pubmed.ncbi.nlm.nih.gov/32566760" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2020.02.24.20023325", | |||
"name": "Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post-kala-azar dermal leishmaniasis", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2020.02.24.20023325" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.12688/wellcomeopenres.15719.1", | |||
"name": "Estimating the burden of antimicrobial resistance in Malawi: protocol for a prospective observational study of the morbidity, mortality and economic cost of third-generation cephalosporin resistant bloodstream infection", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.12688/wellcomeopenres.15719.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5588/ijtld.19.0417", | |||
"name": "Air pollution interventions and respiratory health", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "e56b5382-a8bc-4e0e-8a78-54d04f241578" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85081041885" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5588/ijtld.19.0417" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2020.01.23.20018549", | |||
"name": "Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2020.01.23.20018549" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1136/vr.l6074", | |||
"name": "Small animal disease surveillance 2019", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "000497776300018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85073602964" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1136/vr.l6074" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "9b6e73eb-0734-4f4b-b856-8f4e3d481560" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1136/vr.l3128", | |||
"name": "Small animal disease surveillance 2019", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1136/vr.l3128" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85066046687" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "4b26f89f-c18d-4b81-9277-4fa828ebdf2d" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41598-019-41254-6", | |||
"name": "Dog owners are more likely to meet physical activity guidelines than people without a dog: An investigation of the association between dog ownership and physical activity levels in a UK community", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85064574142" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41598-019-41254-6" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "ffc22225-01d7-419d-9e82-22d2eda40b97" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1136/vr.l722", | |||
"name": "Small animal disease surveillance", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "d8c1635c-2193-4560-a630-219de8ecfcee" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1136/vr.l722" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85061596947" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41598-018-35652-5", | |||
"name": "A study of tuberculosis in road traffic-killed badgers on the edge of the British bovine TB epidemic area", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41598-018-35652-5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1163/1568539x-00003512", | |||
"name": "Brushtail possum (Trichosurus vulpecula) social interactions and their implications for bovine tuberculosis epidemiology", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1163/1568539x-00003512" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85054973058" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "bc751238-ff2a-4084-bd89-8b6fc454c500" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.prevetmed.2018.09.014", | |||
"name": "Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "1057ce97-c59d-4909-a24c-8bd9c6954d13" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85053804604" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.prevetmed.2018.09.014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pntd.0006453", | |||
"name": "The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pntd.0006453" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "c8ffc155-dea0-4527-9e79-407a1002efd1" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85054780032" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1136/vr.k3462", | |||
"name": "Small animal disease surveillance", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051388486" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "1a9cbb7f-a273-47b8-9ec8-e3470f6a1bd9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1136/vr.k3462" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pcbi.1006202", | |||
"name": "Real-time decision-making during emergency disease outbreaks", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pcbi.1006202" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "720ba97c-b6f6-4acb-b73a-251281742178" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85050992207" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.prevetmed.2017.07.005", | |||
"name": "Predicting farm-level animal populations using environmental and socioeconomic variables", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.prevetmed.2017.07.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85024843002" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "02163ecf-04d7-47be-a27b-34a05bc6855b" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pone.0183626", | |||
"name": "Species distribution models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "45a57972-3450-4da7-89fa-af5ab370d29f" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pone.0183626" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85028376672" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1071/wr16215", | |||
"name": "Investigating brushtail possum (Trichosurus vulpecula) home-range size determinants in a New Zealand native forest.", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "45e47c3c-bc0e-43b1-abd0-63572242d5c0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85028584999" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1071/wr16215" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pcbi.1005564", | |||
"name": "sourceR", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85020096654" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pcbi.1005564" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "8d7863aa-9ffc-4f39-9917-8edf8cfb6797" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.prevetmed.2017.01.003", | |||
"name": "Ensemble modelling and structured decision-making to support Emergency Disease Management", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.prevetmed.2017.01.003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "2cdfb35e-4e90-4c0a-9334-9ef93c0decc9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85011685061" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Outbreak response forecasting for vector borne diseases", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "d4cc73b6-3bb3-4753-9d40-6d6706785940" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/00480169.2015.1117955", | |||
"name": "Compatibility between livestock databases used for quantitative biosecurity response in New Zealand", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "454e5bc6-26a9-442c-a1de-3fb775eaa2b9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/00480169.2015.1117955" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949778977" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Forecasting for outbreaks of vector-borne diseases: a data assimilation approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "f4bf45b6-5265-4462-82c1-107635e28c62" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rsif.2015.0367", | |||
"name": "Bayesian data assimilation provides rapid decision support for vector-borne diseases", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84936765309" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "0dc1b7cb-cee1-4c68-86a6-987bf4978e83" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rsif.2015.0367" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/srep09492", | |||
"name": "Risk factors associated with Rift Valley fever epidemics in South Africa in 2008\u201311", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "0f0fd308-c06d-4550-88ed-382e41e4593c" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84925799259" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/srep09492" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1177/1040638713505587", | |||
"name": "Bayesian estimation of the sensitivity and specificity of individual fecal culture and Paralisa to detect Mycobacterium avium subspecies paratuberculosis infection in young farmed deer", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84887384959" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "92447275-bd03-4567-95dd-44fbb55211df" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1177/1040638713505587" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/biostatistics/kxs012", | |||
"name": "Enhancing Bayesian risk prediction for epidemics using contact tracing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84866398608" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "5f8da92e-ee3e-46fc-bf56-00b80c866c1a" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/biostatistics/kxs012" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.sste.2010.11.001", | |||
"name": "Spatio\u2013temporal analyses of highly pathogenic avian influenza H5N1 outbreaks in the Mekong River Delta, Vietnam, 2009", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "4f3e536e-a90b-4c62-ad24-7e77b7f40a98" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.sste.2010.11.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78650520022" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Networks and the epidemiology of infectious disease", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79955108361" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "8f922c94-8983-49c3-a404-96492c53877f" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rsif.2008.0433", | |||
"name": "Predicting undetected infections during the 2007 foot-and-mouth disease outbreak", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rsif.2008.0433" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "157db83b-504b-4860-89b7-cc22b5025fe9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-70350492526" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.prevetmed.2009.05.019", | |||
"name": "A novel approach to real-time risk prediction for emerging infectious diseases", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-67650988880" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "source-work-id", | |||
"value": "064ad6e9-9559-4a5c-9345-9bc24a7e74e8" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.prevetmed.2009.05.019" | |||
} | |||
] | |||
} | |||
] | |||
} | |||
} | } | ||
} | } |