Item talk:Q54439
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:58:55.772959", "name": "Jacob B. Lowenstern", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-0464-7779" } ], "jobTitle": "Director, Volcano Disaster Assistance Program", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:58:55.779265", "affiliatedOrganization": { "@type": "Organization", "name": "Volcano Hazards Program", "url": "https://www.usgs.gov/programs/VHP" }, "roleName": "Director, Volcano Disaster Assistance Program" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Director, Volcano Disaster Assistance Program with the Volcano Hazards Program" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Jake Lowenstern is a research geologist with the U.S. Geological Survey in Vancouver, WA. He serves as the Chief of the Volcano Disaster Assistance Program, which is a partnership of the USGS and USAID's Bureau of Humanitarian Assistance." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "From 2002-2017, Jake served as Scientist-in-Charge of the Yellowstone Volcano Observatory. Through his career, he has worked on a wide variety of topics related to magmas and their overlying hydrothermal systems." } ], "email": "jlwnstrn@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/jacob-b-lowenstern", "affiliation": [ { "@type": "Organization", "name": "Geological Society of America (GSA)" }, { "@type": "Organization", "name": "Mineralogical Society of America (MSA)" }, { "@type": "Organization", "name": "American Geophysical Union" }, { "@type": "Organization", "name": "Society of Economic Geologists (SEG)" }, { "@type": "Organization", "name": "International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)" } ], "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "Ph.D. Stanford University 1992" }, { "@type": "EducationalOccupationalCredential", "name": "M.S. Stanford University 1991" }, { "@type": "EducationalOccupationalCredential", "name": "A. B. Dartmouth College 1986" } ], "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Volcanology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Melt Inclusions" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Volatiles" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Geochronology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Gas Geochemistry" } ], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:58:55.772964" }, "award": [ "Fellow, GSA 2010", "Fellow, MSA 2021", "Lindgren Award (SEG) 2000", "AAPG Distinguished Lecturer, 2006" ] }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0003-0464-7779", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1016/j.gca.2023.10.021", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2023.10.021" }, "name": "The dynamic influence of subsurface geological processes on the assembly and diversification of thermophilic microbial communities in continental hydrothermal systems" }, { "@id": "https://doi.org/10.1186/s13617-021-00112-9", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1186/s13617-021-00112-9" }, "name": "Guidelines for volcano-observatory operations during crises: recommendations from the 2019 volcano observatory best practices meeting" }, { "@id": "https://doi.org/10.1007/s00445-021-01512-w", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00445-021-01512-w" }, "name": "Strengthening local volcano observatories through global collaborations" }, { "@id": "https://doi.org/10.1029/2019jb018208", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jb018208" }, "name": "Magma Intrusion and Volatile Ascent Beneath Norris Geyser Basin, Yellowstone National Park" }, { "@id": "https://doi.org/10.1002/essoar.10501815.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10501815.1" }, "name": "Magma intrusion and volatile ascent beneath Norris Geyser Basin, Yellowstone National Park" }, { "@id": "https://doi.org/10.3133/fs20193074", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20193074" }, "name": "Indonesia and the United States team up to reduce impacts from dangerous volcanoes" }, { "@id": "https://doi.org/10.1002/2017gl075344", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017gl075344" }, "name": "Conversion of Wet Glass to Melt at Lower Seismogenic Zone Conditions: Implications for Pseudotachylyte Creep" }, { "@id": "https://doi.org/10.3133/sir20175022p", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20175022p" }, "name": "Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau" }, { "@id": "https://doi.org/10.3133/fs20173071", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20173071" }, "name": "The Volcano Disaster Assistance Program\u2014Helping to save lives worldwide for more than 30 years" }, { "@id": "https://doi.org/10.1126/sciadv.1600913", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/sciadv.1600913" }, "name": "Quantifying gas emissions from the \u201cMillennium Eruption\u201d of Paektu volcano, Democratic People\u2019s Republic of Korea/China" }, { "@id": "https://doi.org/10.3133/sir20145137", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20145137" }, "name": "Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations" }, { "@id": "https://doi.org/10.1002/2014rg000452", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84908001651" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014rg000452" } ], "name": "Dynamics of the Yellowstone hydrothermal system" }, { "@id": "https://doi.org/10.3133/ofr20141058", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20141058" }, "name": "Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure" }, { "@id": "https://doi.org/10.1002/2014gc005469", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014gc005469" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907938094" } ], "name": "Modeling ash fall distribution from a Yellowstone supereruption" }, { "@id": "https://doi.org/10.1038/nature12992", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature12992" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894236512" } ], "name": "Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone" }, { "@id": "https://doi.org/10.3133/cir1351v.1.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/cir1351v.1.1" }, "name": "Protocols for Geologic Hazards Response by the Yellowstone Volcano Observatory" }, { "@id": "https://doi.org/10.3133/ofr20131026", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20131026" }, "name": "Abstracts for the October 2012 meeting on Volcanism in the American Southwest, Flagstaff, Arizona" }, { "@id": "https://doi.org/10.2138/am.2013.4466", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885082844" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2138/am.2013.4466" } ], "name": "Analysis of H2O in silicate glass using attenuated total refectance (ATR) micro-FTIR spectroscopy" }, { "@id": "https://doi.org/10.1007/s00410-012-0811-z", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00410-012-0811-z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872796536" } ], "name": "Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland" }, { "@id": "https://doi.org/10.1016/b978-0-08-095975-7.01106-2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/b978-0-08-095975-7.01106-2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84903811261" } ], "name": "Melt Inclusions" }, { "@id": "https://doi.org/10.5027/andgeov40n2-a06", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5027/andgeov40n2-a06" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84877925878" } ], "name": "The chait\u00e9n Rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the Rhyolite magma | El domo riol\u00edtico del volc\u00e1n Chait\u00e9n: secuencia eruptiva, tasa de emisi\u00f3n y fuente del magma riol\u00edtico" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2012.09.001", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867923205" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2012.09.001" } ], "name": "Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming" }, { "@id": "https://doi.org/10.1007/s00445-012-0663-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870700950" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00445-012-0663-4" } ], "name": "Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite dome at Volc\u00e1n Chait\u00e9n, Chile during 2008 and 2009" }, { "@id": "https://doi.org/10.1029/2011gc003835", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011gc003835" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856513055" } ], "name": "Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin" }, { "@id": "https://doi.org/10.1029/2011gl049901", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84855593873" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011gl049901" } ], "name": "Identifying bubble collapse in a hydrothermal system using hidden Markov models" }, { "@id": "https://doi.org/10.1016/j.gca.2012.04.051", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2012.04.051" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862257293" } ], "name": "Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876223530" }, "name": "Mapping temperature and radiant geothermal heat flux anomalies in the yellowstone geothermal system using ASTER thermal infrared data" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2012.07.019", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2012.07.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868582353" } ], "name": "Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2012.04.022", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861337576" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2012.04.022" } ], "name": "Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park" }, { "@id": "https://doi.org/10.3133/ds632", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ds632" }, "name": "Water chemistry and electrical conductivity database for rivers in Yellowstone National Park, Wyoming" }, { "@id": "https://doi.org/10.3133/sir20115012", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20115012" }, "name": "Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming" }, { "@id": "https://doi.org/10.1016/j.epsl.2011.04.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79956310732" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2011.04.005" } ], "name": "Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica" }, { "@id": "https://doi.org/10.1093/petrology/egr008", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955457565" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/petrology/egr008" } ], "name": "Molybdenite saturation in silicic magmas: Occurrence and petrological implications" }, { "@id": "https://doi.org/10.1130/g31393.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g31393.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79951695875" } ], "name": "Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland" }, { "@id": "https://doi.org/10.1038/nature10541", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80054976362" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature10541" } ], "name": "The role of dyking and fault control in the rapid onset of eruption at Chait\u00e9n volcano, Chile" }, { "@id": "https://doi.org/10.1029/2009gc003009", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951703272" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009gc003009" } ], "name": "Contamination of basaltic lava by seawater: Evidence found in a lava pillar from Axial Seamount, Juan de Fuca Ridge" }, { "@id": "https://doi.org/10.1029/2010eo420001", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78649299028" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010eo420001" } ], "name": "Interdisciplinary studies of eruption at Chait\u00e9n Volcano, Chile" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863172479" }, "name": "Protocols for geologic hazards response by the Yellowstone Volcano Observatory" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955448993" }, "name": "Rhyolite magma drilled in Iceland could power the world's hottest enhanced geothermal system" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2010.07.001", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77956189331" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2010.07.001" } ], "name": "River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70249141275" }, "name": "Establishing major permeability controls in the mak-ban geothermal field, Philippines" }, { "@id": "https://doi.org/10.2113/gselements.4.1.35", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2113/gselements.4.1.35" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-41449097645" } ], "name": "Monitoring a supervolcano in repose: Heat and volatile flux at the yellostone caldera" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2008.09.016", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2008.09.016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57049095848" } ], "name": "Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA" }, { "@id": "https://doi.org/10.3133/sir20075174b", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20075174b" }, "name": "Chronology of postglacial eruptive activity and calculation of eruption probabilities for Medicine Lake volcano, northern California" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57049145429" }, "name": "Extensive hydrothermal rock alteration in a low pH, steam-heated environment: Hot Springs Basin, Yellowstone National Park" }, { "@id": "https://doi.org/10.3133/ofr20071071", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20071071" }, "name": "Preliminary Assessment of Volcanic and Hydrothermal Hazards in Yellowstone National Park and Vicinity" }, { "@id": "https://doi.org/10.3133/ds278", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ds278" }, "name": "River Chemistry and Solute Flux in Yellowstone National Park" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2007.01.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2007.01.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247569907" } ], "name": "Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes" }, { "@id": "https://doi.org/10.3133/sir20075234", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20075234" }, "name": "Systematics of Water Temperature and Flow at Tantalus Creek During Calendar Year 2005, Norris Geyser Basin, Yellowstone National Park, Wyoming" }, { "@id": "https://doi.org/10.3133/sir20075174a", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20075174a" }, "name": "Volcano Hazards Assessment for Medicine Lake Volcano, Northern California" }, { "@id": "https://doi.org/10.1130/g23151a.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g23151a.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846383470" } ], "name": "Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)" }, { "@id": "https://doi.org/10.1016/s1871-644x(06)80021-5", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s1871-644x(06)80021-5" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67349248655" } ], "name": "Chapter 7 Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy" }, { "@id": "https://doi.org/10.1093/petrology/egl038", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/petrology/egl038" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33750220805" } ], "name": "Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea" }, { "@id": "https://doi.org/10.1098/rsta.2006.1813", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33748102258" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1098/rsta.2006.1813" } ], "name": "Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems" }, { "@id": "https://doi.org/10.1016/j.epsl.2005.02.012", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2005.02.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-18244402177" } ], "name": "Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon" }, { "@id": "https://doi.org/10.1093/petrology/egh060", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-12444318613" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/petrology/egh060" } ], "name": "Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons" }, { "@id": "https://doi.org/10.3133/fs20053024", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20053024" }, "name": "Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?" }, { "@id": "https://doi.org/10.1016/j.gca.2004.09.012", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-15844369019" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2004.09.012" } ], "name": "The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis" }, { "@id": "https://doi.org/10.1016/j.yqres.2004.03.001", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.yqres.2004.03.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3042712388" } ], "name": "Age of the Rockland tephra, western USA" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2004.05.015", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2004.05.015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-17644373806" } ], "name": "What makes hydromagmatic eruptions violent? Some insights from the Keanak\u0101ko'i Ash, K\u012blauea Volcano, Hawai'i" }, { "@id": "https://doi.org/10.1016/s0012-821x(02)01109-3", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0012-821x(02)01109-3" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037441839" } ], "name": "Crystallisation ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and earthquake flat eruption deposits, Taupo volcanic zone, New Zealand" }, { "@id": "https://doi.org/10.1016/s1871-644x(03)80021-9", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s1871-644x(03)80021-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-76249113368" } ], "name": "Melt inclusions come of age: Volatiles, volcanoes, and sorby's legacy" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036698923" }, "name": "Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses" }, { "@id": "https://doi.org/10.1016/s0098-3004(01)00081-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036606462" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0098-3004(01)00081-4" } ], "name": "VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel" }, { "@id": "https://doi.org/10.1007/s001260100185", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s001260100185" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034817189" } ], "name": "Carbon dioxide in magmas and implications for hydrothermal systems" }, { "@id": "https://doi.org/10.1016/s0375-6742(00)00075-3", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0375-6742(00)00075-3" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034210835" } ], "name": "A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide" }, { "@id": "https://doi.org/10.1016/s0012-821x(00)00273-9", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034535777" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0012-821x(00)00273-9" } ], "name": "U-Th dating of single zircons from young granitoid xenoliths: New tools for understanding volcanic processes" }, { "@id": "https://doi.org/10.1016/s0375-6505(99)00002-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0375-6505(99)00002-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033120955" } ], "name": "A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033298843" }, "name": "Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991" }, { "@id": "https://doi.org/10.3133/ofr99304", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr99304" }, "name": "Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033300073" }, "name": "Geochemistry of waters from springs, wells, and snowpack on and adjacent to Medicine Lake volcano, northern California" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0345731880" }, "name": "Geology for a Changing World: A Science Strategy for the Geologic Division of the U.S. Geological Survey, 2000-2010" }, { "@id": "https://doi.org/10.3133/cir1172", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/cir1172" }, "name": "Geology for a changing world; a science strategy for the Geologic Division of the U.S. Geological Survey, 2000-2010" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031430546" }, "name": "Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, eritrea, northeast Africa" }, { "@id": "https://doi.org/10.1017/s0263593300006696", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1017/s0263593300006696" }, "name": "Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030314960" }, "name": "Geology and geothermal potential of Alid volcanic center, Eritrea, Africa" }, { "@id": "https://doi.org/10.1130/0091-7613(1995)023<1091:vtiacm>2.3.co", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1995)023<1091:vtiacm>2.3.co" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874959656" } ], "name": "Volatile transport in a convecting magma column: implications for porphyry Mo mineralization" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028315558" }, "name": "Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy" }, { "@id": "https://doi.org/10.1130/0091-7613(1994)022<0893:dvciao>2.3.co", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1994)022<0893:dvciao>2.3.co" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874958056" } ], "name": "Dissolved volatile concentrations in an ore-forming magma" }, { "@id": "https://doi.org/10.3133/ofr94242", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr94242" }, "name": "Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah" }, { "@id": "https://doi.org/10.1038/370519a0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028486373" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/370519a0" } ], "name": "The role of magmas in the formation of hydrothermal ore deposits" }, { "@id": "https://doi.org/10.1007/bf01046542", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027794936" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf01046542" } ], "name": "Evidence for a copper-bearing fluid in magma erupted at the Valley of ten thousand smokes, Alaska" }, { "@id": "https://doi.org/10.1007/bf00307869", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027488334" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf00307869" } ], "name": "The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantelleria, Italy" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026276772" }, "name": "Evidence for extreme partitioning of copper into a magmatic vapor phase" }, { "@id": "https://doi.org/10.1007/bf00278208", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026268645" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf00278208" } ], "name": "New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026277808" }, "name": "Petrogenesis of high-silica rhyolite on the Alaska Peninsula" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026268939" }, "name": "The West Mageik Lake sill complex as an analogue for magma transport during the 1912 eruption at the Valley of Ten Thousand Smokes, Alaska" } ] }, "@type": "Person", "affiliation": [ { "@type": "Organization", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/04zyakw81" }, "name": "Mineralogical Society of America" }, { "@id": "https://doi.org/10.13039/100005720", "@type": "Organization", "name": "Geological Society of America" } ], "alumniOf": [ { "@type": "Organization", "alternateName": "Department of Earth Scienc", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3728" }, "name": "Dartmouth College" }, { "@type": "Organization", "alternateName": "Department of Geology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "6429" }, "name": "Stanford University" } ], "familyName": "Lowenstern", "givenName": "Jacob", "identifier": [ { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "6701848826" }, { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "125470" } ], "mainEntityOfPage": "https://orcid.org/0000-0003-0464-7779" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "J. B. Lowenstern", "display_name_alternatives": [ "J.B Lowenstern", "Jacob Lowenstern", "J. Lowenstern", "Jacob B. Lowenstern", "J LOWENSTERN", "J. B. Lowenstern" ], "ids": { "openalex": "https://openalex.org/A5038677590", "orcid": "https://orcid.org/0000-0003-0464-7779", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=6701848826&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0003-0464-7779", "topics": [ { "count": 81, "display_name": "Tectonic and Geochronological Evolution of Orogens", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10001", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 44, "display_name": "Machine Learning for Mineral Prospectivity Mapping", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T12157", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 39, "display_name": "Seismicity and Tectonic Plate Interactions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10110", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 37, "display_name": "Climate Change and Paleoclimatology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10017", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 28, "display_name": "Characterization of Shale Gas Pore Structure", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10399", "subfield": { "display_name": "Mechanics of Materials", "id": "https://openalex.org/subfields/2211" } }, { "count": 18, "display_name": "Machine Learning for Earthquake Early Warning Systems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T13018", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 16, "display_name": "Mantle Dynamics and Earth's Structure", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10413", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 14, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 14, "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10398", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 11, "display_name": "Geochemistry and Petrology of Gemstones", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13443", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 8, "display_name": "Community Resilience to Natural Disasters", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T10747", "subfield": { "display_name": "Sociology and Political Science", "id": "https://openalex.org/subfields/3312" } }, { "count": 8, "display_name": "Glass Science and Technology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Materials Science", "id": "https://openalex.org/fields/25" }, "id": "https://openalex.org/T10544", "subfield": { "display_name": "Ceramics and Composites", "id": "https://openalex.org/subfields/2503" } }, { "count": 8, "display_name": "Groundwater Flow and Transport Modeling", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10894", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 7, "display_name": "Carbon Dioxide Sequestration in Geological Formations", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11302", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 7, "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10995", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 6, "display_name": "Numerical Weather Prediction Models", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10466", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 6, "display_name": "Landslide Hazards and Risk Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10535", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 6, "display_name": "Paleoredox and Paleoproductivity Proxies", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10109", "subfield": { "display_name": "Paleontology", "id": "https://openalex.org/subfields/1911" } }, { "count": 6, "display_name": "Geological Modeling and Uncertainty Analysis", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13067", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 5, "display_name": "Water Quality and Hydrogeology Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12773", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 5, "display_name": "Geodynamic Evolution of Western Mediterranean Region", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13205", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 5, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 5, "display_name": "Geophysical Exploration and Monitoring Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10572", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 4, "display_name": "Geological Evolution of South China Sea", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13177", "subfield": { "display_name": "Geology", "id": "https://openalex.org/subfields/1907" } }, { "count": 4, "display_name": "Geomycology in Cultural Heritage Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11643", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } } ], "updated_date": "2024-05-18T17:20:53.043257" }
}