Item talk:Q49935
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:59:14.299348", "name": "Melanie Vanderhoof", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-0101-5533" } ], "jobTitle": "Research Geographer", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:59:14.306424", "affiliatedOrganization": { "@type": "Organization", "name": "Geosciences and Environmental Change Science Center", "url": "https://www.usgs.gov/centers/geosciences-and-environmental-change-science-center" }, "roleName": "Research Geographer" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "U.S. Geological Survey as a research geographer in 2015" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "ORISE Post-Doctoral Fellowship at the U.S. Environmental Protection Agency, Office of Research and Development" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Research Geographer with the Geosciences and Environmental Change Science Center" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Melanie Vanderhoof is a Research Geographer with the USGS, Geosciences and Environmental Change Science Center in Denver, CO. Her research focuses on using satellite imagery to understand how ecosystems change over time. She is particularly interested in surface water dynamics and disturbance events, such as fire and insect outbreaks." } ], "email": "mvanderhoof@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/melanie-vanderhoof", "affiliation": [], "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "PhD in Geography from Clark University in 2014" }, { "@type": "EducationalOccupationalCredential", "name": "M.S. degree in Geography from San Francisco State University in 2007" }, { "@type": "EducationalOccupationalCredential", "name": "B.S. degree in Biology and Society from Cornell University in 2004" } ], "knowsAbout": [], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:59:14.299356" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-0101-5533", "@reverse": { "creator": [ { "@id": "https://doi.org/10.5194/hess-2024-119", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2024-119" }, "name": "Surface water storage influences streamflow signatures" }, { "@id": "https://doi.org/10.1029/2023ef004106", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023ef004106" }, "name": "Climate Change Will Impact Surface Water Extents and Dynamics Across the Central United States" }, { "@id": "https://doi.org/10.1002/ecs2.4403", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecs2.4403" }, "name": "Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA" }, { "@id": "https://doi.org/10.3390/f13111905", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f13111905" }, "name": "GCPs-Free Photogrammetry for Estimating Tree Height and Crown Diameter in Arizona Cypress Plantation Using UAV-Mounted GNSS RTK" }, { "@id": "https://doi.org/10.1071/wf22044", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/wf22044" }, "name": "Contemporary (1984\u20132020) fire history metrics for the conterminous United States and ecoregional differences by land ownership" }, { "@id": "https://doi.org/10.1088/1748-9326/ac8da9", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ac8da9" }, "name": "Wind turbine wakes can impact down-wind vegetation greenness" }, { "@id": "https://doi.org/10.3390/fire4030052", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/fire4030052" }, "name": "Mapping Wetland Burned Area from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016\u20132019)" }, { "@id": "https://doi.org/10.3390/fire4020026", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/fire4020026" }, "name": "Using the Landsat Burned Area Products to Derive Fire History Relevant for Fire Management and Conservation in the State of Florida, Southeastern USA" }, { "@id": "https://doi.org/10.1002/eap.2237", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.2237" }, "name": "Tracking rates of postfire conifer regeneration vs. deciduous vegetation recovery across the western United States" }, { "@id": "https://doi.org/10.5194/essd-12-3229-2020", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-12-3229-2020" }, "name": "Development of a standard database of reference sites for validating global burned area products" }, { "@id": "https://doi.org/10.3390/rs12091464", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12091464" }, "name": "Isolating Anthropogenic Wetland Loss by Concurrently Tracking Inundation and Land Cover Disturbance across the Mid-Atlantic Region, U.S." }, { "@id": "https://doi.org/10.5194/essd-2020-74", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-2020-74" }, "name": "Development of a standard database of reference sites for validating global burned area products" }, { "@id": "https://doi.org/10.3390/rs12040644", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12040644" }, "name": "Mapping Forested Wetland Inundation in the Delmarva Peninsula, USA Using Deep Convolutional Neural Networks" }, { "@id": "https://doi.org/10.1111/1752-1688.12826", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1752-1688.12826" }, "name": "Spatiotemporal Variability of Modeled Watershed Scale Surface\u2010Depression Storage and Runoff for the Conterminous United States" }, { "@id": "https://doi.org/10.5194/hess-23-4269-2019", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-23-4269-2019" }, "name": "Influence of multi-decadal land use, irrigation practices and climate on riparian corridors across the Upper Missouri River headwaters basin, Montana" }, { "@id": "https://doi.org/10.5194/hess-2019-137-ac3", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2019-137-ac3" }, "name": "Response to all comments and tracked changes" }, { "@id": "https://doi.org/10.5194/hess-2019-137-ac1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2019-137-ac1" }, "name": "Response to R1 comments" }, { "@id": "https://doi.org/10.5194/hess-2019-137-ac2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2019-137-ac2" }, "name": "Response to R2 comments" }, { "@id": "https://doi.org/10.1080/01431161.2019.1582112", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2019.1582112" }, "name": "The potential role of very high-resolution imagery to characterise lake, wetland and stream systems across the Prairie Pothole Region, United States" }, { "@id": "https://doi.org/10.5194/hess-2019-137", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2019-137" }, "name": "Influence of multi-decadal land use, irrigation practices and climate on riparian corridors across the Upper Missouri River Headwaters Basin, Montana" }, { "@id": "https://doi.org/10.1029/2018jg004613", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018jg004613" }, "name": "Estimating Soil Respiration in a Subalpine Landscape Using Point, Terrain, Climate, and Greenness Data" }, { "@id": "https://doi.org/10.20944/preprints201808.0358.v1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.20944/preprints201808.0358.v1" }, "name": "Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method" }, { "@id": "https://doi.org/10.3390/rs10060913", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs10060913" }, "name": "Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream Condition, Missouri River Headwaters Basin, Montana" }, { "@id": "https://doi.org/10.5194/hess-22-1851-2018", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-22-1851-2018" }, "name": "Wetlands inform how climate extremes influence surface water expansion and contraction" }, { "@id": "https://doi.org/10.5194/hess-2017-581-ac4", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-581-ac4" }, "name": "Document showing response to comments and tracked changes" }, { "@id": "https://doi.org/10.5194/hess-2017-581-ac3", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-581-ac3" }, "name": "Manuscript with changes tracked attached" }, { "@id": "https://doi.org/10.5194/hess-2017-581-ac1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-581-ac1" }, "name": "Response to Reviewer 1 Comments" }, { "@id": "https://doi.org/10.5194/hess-2017-581-ac2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-581-ac2" }, "name": "Reviewer 2 Response to Comments" }, { "@id": "https://doi.org/10.1007/s11273-017-9554-y", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11273-017-9554-y" }, "name": "The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware" }, { "@id": "https://doi.org/10.1002/2017wr021016", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr021016" }, "name": "Estimating Wetland Connectivity to Streams in the Prairie Pothole Region: An Isotopic and Remote Sensing Approach" }, { "@id": "https://doi.org/10.1071/wf18075", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/wf18075" }, "name": "It matters when you measure it: using snow-cover Normalised Difference Vegetation Index (NDVI) to isolate post-fire conifer regeneration" }, { "@id": "https://doi.org/10.1071/wf17177", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/wf17177" }, "name": "Time series of high-resolution images enhances efforts to monitor post-fire condition and recovery, Waldo Canyon fire, Colorado, USA" }, { "@id": "https://doi.org/10.5194/hess-2017-581", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-581" }, "name": "Wetlands inform how climate extremes influence surface water expansion and contraction" }, { "@id": "https://doi.org/10.1016/j.rse.2017.06.025", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.06.025" }, "name": "Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States" }, { "@id": "https://doi.org/10.3390/rs9070743", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9070743" }, "name": "Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery" }, { "@id": "https://doi.org/10.1007/s11273-016-9516-9", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11273-016-9516-9" }, "name": "Patterns and drivers for wetland connections in the Prairie Pothole Region, United States" } ] }, "@type": "Person", "familyName": "Vanderhoof", "givenName": "Melanie", "mainEntityOfPage": "https://orcid.org/0000-0002-0101-5533" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Melanie K. Vanderhoof", "display_name_alternatives": [ "Melanie Vanderhoof", "M. Vanderhoof", "Melanie K. Vanderhoof", "M. K. Vanderhoof" ], "ids": { "openalex": "https://openalex.org/A5009162924", "orcid": "https://orcid.org/0000-0002-0101-5533" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0002-0101-5533", "topics": [ { "count": 33, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 21, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 14, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 10, "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13388", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 9, "display_name": "Ecological Dynamics of Riverine Landscapes", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10577", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 8, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 8, "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10779", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 7, "display_name": "Soil Erosion and Agricultural Sustainability", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10889", "subfield": { "display_name": "Soil Science", "id": "https://openalex.org/subfields/1111" } }, { "count": 6, "display_name": "Drivers and Impacts of Forest Pest Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11691", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 6, "display_name": "Mapping Forests with Lidar Remote Sensing", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11164", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 6, "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10111", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 5, "display_name": "Global Forest Drought Response and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10266", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 5, "display_name": "Importance and Conservation of Freshwater Biodiversity", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10302", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 5, "display_name": "Fire and Smoke Detection Technologies", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12597", "subfield": { "display_name": "Safety, Risk, Reliability and Quality", "id": "https://openalex.org/subfields/2213" } }, { "count": 5, "display_name": "Estimation of Forest Biomass and Carbon Stocks", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11880", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 5, "display_name": "Biodiversity Conservation and Ecosystem Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10005", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 4, "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T11760", "subfield": { "display_name": "Plant Science", "id": "https://openalex.org/subfields/1110" } }, { "count": 4, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 4, "display_name": "Fire Safety in Tunnel Fires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T11317", "subfield": { "display_name": "Safety, Risk, Reliability and Quality", "id": "https://openalex.org/subfields/2213" } }, { "count": 3, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 3, "display_name": "Saproxylic Insect Ecology and Forest Management", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T12713", "subfield": { "display_name": "Insect Science", "id": "https://openalex.org/subfields/1109" } }, { "count": 2, "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10398", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 2, "display_name": "Climate Change Impacts on Forest Carbon Sequestration", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11753", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Global Drought Monitoring and Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11186", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Aeolian Geomorphology and Wind Erosion Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T12383", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } } ], "updated_date": "2024-05-16T05:16:13.959707" }
}