Item talk:Q49498
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2025-03-20T10:52:05.279241", "url": "https://www.usgs.gov/staff-profiles/camille-lafosse-stagg", "mainEntityOfPage": { "@type": "WebPage", "url": "https://www.usgs.gov/staff-profiles/camille-lafosse-stagg", "additionalProperty": [ { "@type": "PropertyValue", "propertyID": "status code", "value": 200 }, { "@type": "PropertyValue", "propertyID": "last update", "value": "2025-03-13T14:27:23.634070" }, { "@type": "PropertyValue", "propertyID": "retrieved", "value": "2025-03-13T14:27:23.634070" } ] }, "name": "Camille LaFosse Stagg, Ph.D.", "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" } }, "jobTitle": "Research Ecologist", "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Research Ecologist with the Wetland and Aquatic Research Center" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Camille Stagg is a Research Ecologist at the Wetland and Aquatic Research Center in Lafayette, Louisiana." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "Camille's research focuses on how ecosystem functions, such as elevation change, carbon cycling, and resilience, are affected by global stressors. Her goal is to understand how these processes respond to changing conditions, including rising sea levels, elevated atmospheric CO2, and land use change, to provide guidance for management and restoration of these dynamic ecosystems." } ], "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2025-03-20T10:52:05.388364", "affiliatedOrganization": { "@type": "Organization", "name": "Wetland and Aquatic Research Center", "url": "https://www.usgs.gov/centers/wetland-and-aquatic-research-center" }, "roleName": "Research Ecologist" } ], "email": "staggc@usgs.gov", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID iD", "value": "0000-0002-1125-7253", "url": "https://orcid.org/0000-0002-1125-7253" } ], "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "Ph.D., Oceanography and Coastal Sciences, Louisiana State University, 2009" }, { "@type": "EducationalOccupationalCredential", "name": "M.S., Environmental Toxicology, Clemson University, 2004" }, { "@type": "EducationalOccupationalCredential", "name": "B.S., Biology, Christian Brothers University, 2002" } ], "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "coastal wetland ecology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "ecological restoration" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "climate change impacts" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "ecosystem functions" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "carbon cycling" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "estuarine ecosystems" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "habitat alteration" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "wetland ecosystems" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "ecological processes" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "ecosystem diversity" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "ecosystems" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "environmental assessment" } ] }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-1125-7253", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1029/2023jg007832", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023jg007832" }, "name": "Vegetation Loss Following Vertical Drowning of Mississippi River Deltaic Wetlands Leads to Faster Microbial Decomposition and Decreases in Soil Carbon" }, { "@id": "https://doi.org/10.1007/s12237-024-01330-1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12237-024-01330-1" }, "name": "Correction: Accelerating Elevation Gain Indicates Land Loss Associated with Erosion in Mississippi River Deltaic Plain Tidal Wetlands" }, { "@id": "https://doi.org/10.1007/s12237-023-01321-8", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12237-023-01321-8" }, "name": "Accelerating Elevation Gain Indicates Land Loss Associated with Erosion in Mississippi River Deltaic Plain Tidal Wetlands" }, { "@id": "https://doi.org/10.1007/s10021-023-00871-z", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-023-00871-z" }, "name": "Integrating Remote Sensing with Ground-based Observations to Quantify the Effects of an Extreme Freeze Event on Black Mangroves (Avicennia germinans) at the Landscape Scale" }, { "@id": "https://doi.org/10.5066/p9yj25dp", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9yj25dp" }, "name": "Plant, soil, and microbial characteristics of marsh collapse in Mississippi River Deltaic wetlands" }, { "@id": "https://doi.org/10.3390/rs15061697", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15061697" }, "name": "Above- and Belowground Biomass Carbon Stock and Net Primary Productivity Maps for Tidal Herbaceous Marshes of the United States" }, { "@id": "https://doi.org/10.5281/zenodo.7625435", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5281/zenodo.7625435" }, "name": "Rates of greenhouse gas (carbon dioxide, methane and nitrous oxide) fluxes, denitrification-derived N2O and N2 fluxes and nitrification-derived N2O fluxes from salt marsh soils in Quebec, Canada and Louisiana, U.S. under ambient and elevated temperature and nutrient loading." }, { "@id": "https://doi.org/10.5281/zenodo.7625434", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5281/zenodo.7625434" }, "name": "Rates of greenhouse gas (carbon dioxide, methane and nitrous oxide) fluxes, denitrification-derived N2O and N2 fluxes and nitrification-derived N2O fluxes from salt marsh soils in Quebec, Canada and Louisiana, U.S. under ambient and elevated temperature and nutrient loading." }, { "@id": "https://doi.org/10.5066/p9i1pcls", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9i1pcls" }, "name": "Biomass Carbon Stock and Net Primary Productivity in Tidal Herbaceous Wetlands of the Conterminous United States" }, { "@id": "https://doi.org/10.1002/eap.2700", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.2700" }, "name": "Modeling impacts of drought\u2010induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands" }, { "@id": "https://doi.org/10.1029/2022jg006807", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg006807" }, "name": "A Model of the Spatiotemporal Dynamics of Soil Carbon Following Coastal Wetland Loss Applied to a Louisiana Salt Marsh in the Mississippi River Deltaic Plain" }, { "@id": "https://doi.org/10.3390/plants11091259", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/plants11091259" }, "name": "Presence of the Herbaceous Marsh Species Schoenoplectus americanus Enhances Surface Elevation Gain in Transitional Coastal Wetland Communities Exposed to Elevated CO2 and Sediment Deposition Events" }, { "@id": "https://doi.org/10.5066/p9ew3n0d", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9ew3n0d" }, "name": "Cone penetrometer and elevation measurement data of coastal wetland plant states for resilience quantification, Louisiana, USA (2019)" }, { "@id": "https://doi.org/10.1111/1365-2745.13552", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.13552" }, "name": "Stress gradients interact with disturbance to reveal alternative states in salt marsh: Multivariate resilience at the landscape scale" }, { "@id": "https://doi.org/10.1029/2020jg005832", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg005832" }, "name": "Long\u2010Term Carbon Sinks in Marsh Soils of Coastal Louisiana are at Risk to Wetland Loss" }, { "@id": "https://doi.org/10.5066/p93u3b3e", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p93u3b3e" }, "name": "Long-term soil carbon data and accretion from four marsh types in Mississippi River Delta in 2015" }, { "@id": "https://doi.org/10.5066/p98r3zxe", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p98r3zxe" }, "name": "Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands" }, { "@id": "https://doi.org/10.1029/2018jg004996", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018jg004996" }, "name": "Modeling Soil Porewater Salinity Response to Drought in Tidal Freshwater Forested Wetlands" }, { "@id": "https://doi.org/10.5066/p9jvzz4n", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9jvzz4n" }, "name": "Modeling soil pore water salinity response to drought in tidal freshwater forested wetlands" }, { "@id": "https://doi.org/10.5066/p9cw5vuc", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9cw5vuc" }, "name": "Rapid peat development beneath maturing mangrove forests: quantifying ecosystem changes along a 25-year chronosequence of created coastal wetlands" }, { "@id": "https://doi.org/10.5066/p9sxjx2t", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9sxjx2t" }, "name": "Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A." }, { "@id": "https://doi.org/10.5066/p9hqdp8o", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9hqdp8o" }, "name": "Salt marsh phenology and sexual reproductive characteristics at reference and restored sites in Louisiana, USA (2016)" }, { "@id": "https://doi.org/10.3133/ofr20191045", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20191045" }, "name": "Using UAS capabilities to help identify hummock-hollow formation and fragmentation in critical marsh habitat (Spartina patens) for mottled ducks in southeast Texas" }, { "@id": "https://doi.org/10.1111/gcb.14376", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14376" }, "name": "Climate and plant controls on soil organic matter in coastal wetlands" }, { "@id": "https://doi.org/10.1016/j.ecss.2018.03.026", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecss.2018.03.026" }, "name": "Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought" }, { "@id": "https://doi.org/10.1029/2017jg004369", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2017jg004369" }, "name": "Flooding Alters Plant\u2010Mediated Carbon Cycling Independently of Elevated Atmospheric CO2 Concentrations" }, { "@id": "https://doi.org/10.1029/2018gb005897", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018gb005897" }, "name": "The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux" }, { "@id": "https://doi.org/10.1007/s10021-018-0223-7", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-018-0223-7" }, "name": "Vegetation Cover, Tidal Amplitude and Land Area Predict Short-Term Marsh Vulnerability in Coastal Louisiana" }, { "@id": "https://doi.org/10.1002/ecy.2131", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecy.2131" }, "name": "Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient" }, { "@id": "https://doi.org/10.5066/f7c8286j", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7c8286j" }, "name": "Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought, Louisiana saltmarsh, 2015" }, { "@id": "https://doi.org/10.5066/f7736q51", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7736q51" }, "name": "Land-water classification for selected sites in McFaddin NWR and J.D. Murphree WMA" }, { "@id": "https://doi.org/10.5066/f7nk3d7m", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7nk3d7m" }, "name": "Salt marsh carbon dynamics under altered hydrologic regimes and elevated CO2 conditions, Louisiana, USA (2014-2015)" }, { "@type": "CreativeWork", "name": "Mechanisms of carbon production, decomposition and accumulation in coastal wetlands" }, { "@type": "CreativeWork", "name": "Wetland carbon: science to guide conservation and restoration" }, { "@type": "CreativeWork", "name": "Identification of Gulf of Mexico ecosystem indicators using an ecological resilience framework" }, { "@id": "https://doi.org/10.1002/ecy.1890", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecy.1890" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021403957" } ], "name": "Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands" }, { "@id": "https://doi.org/10.1002/ecm.1248", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecm.1248" }, "name": "Climatic controls on the global distribution, abundance, and species richness of mangrove forests" }, { "@id": "https://doi.org/10.1038/s41598-017-01224-2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-017-01224-2" }, "name": "Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise" }, { "@id": "https://doi.org/10.2112/jcoastres-d-16-00014.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85019200425" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2112/jcoastres-d-16-00014.1" } ], "name": "Determining the Spatial Variability of Wetland Soil Bulk Density, Organic Matter, and the Conversion Factor between Organic Matter and Organic Carbon across Coastal Louisiana, U.S.A." }, { "@id": "https://doi.org/10.1111/1365-2745.12901", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85034827578" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.12901" } ], "name": "Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient" }, { "@id": "https://doi.org/10.5066/f7w66hxb", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7w66hxb" }, "name": "Elevation change along a coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in the Southeastern U.S.A. (2009-2014)" }, { "@id": "https://doi.org/10.5066/f7s180qj", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7s180qj" }, "name": "Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands" }, { "@id": "https://doi.org/10.1002/ecs2.1956", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecs2.1956" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85033236387" } ], "name": "Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands" }, { "@id": "https://doi.org/10.1038/nclimate3203", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate3203" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85011627887" } ], "name": "Macroclimatic change expected to transform coastal wetland ecosystems this century" }, { "@id": "https://doi.org/10.5066/f7639mvk", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7639mvk" }, "name": "Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015)" }, { "@id": "https://doi.org/10.5066/f73t9fcj", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f73t9fcj" }, "name": "Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011)" }, { "@id": "https://doi.org/10.5066/f7g44nfj", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7g44nfj" }, "name": "Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014)" }, { "@id": "https://doi.org/10.1007/s13157-016-0871-3", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-016-0871-3" }, "name": "Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta" }, { "@type": "CreativeWork", "name": "A critical review of wetland greenhouse gas measurement techniques and scaling considerations" }, { "@type": "CreativeWork", "name": "Spartina alterniflora salt marsh elevation change and greenhouse gas fluxes in response to climate change: effects of altered hydrology and increased atmospheric CO2" }, { "@type": "CreativeWork", "name": "Spartina alterniflora salt marsh elevation change and greenhouse gas fluxes in response to climate change: effects of altered hydrology and increased atmospheric CO2" }, { "@type": "CreativeWork", "name": "Carbon accumulation rates across four marsh habitats in Coastal Louisiana" }, { "@type": "CreativeWork", "name": "Causal mechanisms of organic matter decomposition in tidal freshwater forests impacted by sea-level rise" }, { "@type": "CreativeWork", "name": "Mississippi River diversions: effects of water, nutrients and sediment on marsh vegetation and stability" }, { "@type": "CreativeWork", "name": "Coastal forested wetlands in the face of sea-level rise \u2013 here today and gone tomorrow?" }, { "@type": "CreativeWork", "name": "Developing a cohesive set of indicators for monitoring and managing the resilience and restoration of Gulf Coast salt marshes: will restoration lead to both natural and novel ecosystem types?" }, { "@type": "CreativeWork", "name": ", Climatic controls of biomass and soil carbon in mangroves and other tidal saline wetlands" }, { "@type": "CreativeWork", "name": "Current and historic carbon storage in four marsh habitats in coastal Louisiana" }, { "@type": "CreativeWork", "name": "Water regime and CO2 effects on growth of tidal saline wetland seedlings" }, { "@type": "CreativeWork", "name": "Changes in coastal forest dynamics as a result of rising sea level" }, { "@id": "https://doi.org/10.1007/s12237-016-0177-y", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12237-016-0177-y" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84992197932" } ], "name": "A landscape-scale assessment of above- and belowground primary production in coastal wetlands: implications for climate change-induced community shifts" }, { "@id": "https://doi.org/10.1111/gcb.13084", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13084" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84954364945" } ], "name": "Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change" }, { "@id": "https://doi.org/10.2112/jcoastres-d-16-00014", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2112/jcoastres-d-16-00014" }, "name": "Determining spatial variability of wetland soil bulk density, organic matter and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A" }, { "@id": "https://doi.org/10.1002/ecs2.1588", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecs2.1588" }, "name": "Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a saltmarsh snail" }, { "@id": "https://doi.org/10.1007/s10021-016-0015-x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978128768" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-016-0015-x" } ], "name": "Processes contributing to resilience of coastal wetlands to sea-level rise" }, { "@id": "https://doi.org/10.3133/ofr20161193", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20161193" }, "name": "The Wetland and Aquatic Science Center Strategic Science Plan (SSP)" }, { "@id": "https://doi.org/10.1016/j.ecss.2016.02.010", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecss.2016.02.010" }, "name": "Tidal saline wetland regeneration of sentinel vegetation types in the Northern Gulf of Mexico: an overview" }, { "@type": "CreativeWork", "name": ", Integrated ecosystem function: using habitat suitability index models to assess linkages to emergent and submerged aquatic habitats" }, { "@type": "CreativeWork", "name": "Current and historic carbon storage in four marsh habitats in coastal Louisiana" }, { "@type": "CreativeWork", "name": "Identifying controls on organic matter and decomposition in coastal wetlands along a landscape salinity gradient" }, { "@type": "CreativeWork", "name": "How tidal freshwater forested wetlands respond to salinization to affect carbon balance and soil surface elevation" }, { "@type": "CreativeWork", "name": "Macroclimate controls on tidal wetland ecosystems: variation in plant community structure across abiotic gradients in ten northern Gulf of Mexico estuaries" }, { "@type": "CreativeWork", "name": "Fisheries and integrated ecosystem function: using habitat suitability index models to assess linkages to emergent and submerged aquatic habitats" }, { "@type": "CreativeWork", "name": "Macroclimate controls on tidal wetland ecosystems: Variation in plant community structure across abiotic gradients in ten northern Gulf of Mexico estuaries" }, { "@type": "CreativeWork", "name": "Biogeochemical and surface elevation controls over tidally influenced freshwater forested wetlands as they transitions to marsh" }, { "@type": "CreativeWork", "name": "Coastal wetland ecosystem response to climate change: the role of macroclimatic drivers along the northern Gulf of Mexico" }, { "@type": "CreativeWork", "name": "Elevation change and plant community structure in a sediment-slurry amendment restoration site near Port Fourchon, Louisiana" }, { "@type": "CreativeWork", "name": "How long does it take mangroves to restore processes that control surface elevation after creation?" }, { "@type": "CreativeWork", "name": "Salinization changes carbon budgets and soil surface elevation in tidal freshwater forested wetlands" }, { "@type": "CreativeWork", "name": "Macroclimate controls tidal wetland ecosystems: Variation in foundation plant community zonation across abiotic gradients in three northern Gulf of Mexico estuaries" }, { "@type": "CreativeWork", "name": "Assessing functional equivalency at multiple scales using the Coastwide Reference Monitoring System (CRMS)" }, { "@type": "CreativeWork", "name": "Surface elevation change and vertical accretion in created mangroves in Tampa Bay, Florida, USA" }, { "@type": "CreativeWork", "name": "Beyond just sea level rise: incorporating climate into coastal wetland vulnerability assessments" }, { "@type": "CreativeWork", "name": "Controls on resistance of sediment-amended salt marshes to climate change-induced disturbances" }, { "@type": "CreativeWork", "name": "Elevation change and plant community structure in a sediment-slurry amendment restoration site near Port Fourchon, Louisiana" }, { "@type": "CreativeWork", "name": "Evaluating ecological functions in mangroves and salt marsh restoration projects: examples from the US Gulf Coast" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84908300365" }, "name": "Freshwater availability and coastal wetland foundation species: Ecological transitions along a rainfall gradient" }, { "@id": "https://doi.org/10.1890/13-1269", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/13-1269" }, "name": "Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient" }, { "@id": "https://doi.org/10.1007/s12237-013-9744-7", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12237-013-9744-7" }, "name": "Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA" }, { "@type": "CreativeWork", "name": "Climate change and tidal wetland foundation species: thresholds, resilience, and alternative stable states in the northern Gulf of Mexico" }, { "@type": "CreativeWork", "name": "Understanding functional ecological attributes of forest transitions to marsh in response to climate change in tidally influenced freshwater wetlands of the southeast" }, { "@type": "CreativeWork", "name": "Surface elevation change in created mangroves along a 20-year chronosequence in Tampa Bay, Florida, USA: a preliminary analysis" }, { "@type": "CreativeWork", "name": "Submergence vulnerability tool for the Coastwide Reference Monitoring Systems (CRMS) \u2013 Wetlands-index development and preliminary trends" }, { "@type": "CreativeWork", "name": "The role of subsidence in Louisiana coastal restoration and protection planning" }, { "@id": "https://doi.org/10.3133/ofr20131163", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20131163" }, "name": "Submergence Vulnerability Index development and application to Coastwide Reference Monitoring System Sites and Coastal Wetlands Planning, Protection and Restoration Act projects" }, { "@type": "CreativeWork", "name": "Submergence vulnerability index development and application for the Coastwide Reference Monitoring System and Coastal Wetlands Planning, Protection and Restoration Act Projects" }, { "@type": "CreativeWork", "name": "Influences of salt water intrusion on ecological functions: habitat shifts to alternative stable states" }, { "@type": "CreativeWork", "name": "Submergence vulnerability index tool for the Coastwide Reference Monitoring System (CRMS) \u2013 Wetlands-index development and preliminary trends" }, { "@type": "CreativeWork", "name": "Coastal restoration in a changing environment: the use of resilience and ecosystem health as metrics of success" }, { "@type": "CreativeWork", "name": "Extreme climate events and the recurrent sudden dieback and recovery of salt marshes in the rapidly subsiding Mississippi River delta, Louisiana" }, { "@type": "CreativeWork", "name": "Horizontal and vertical variability in soil bulk density and organic matter across coastal Louisiana wetlands detected by the Coastwide Reference Monitoring System (CRMS) \u2013 Wetlands" }, { "@type": "CreativeWork", "name": "Influences of salinity intrusion on belowground decomposition: implications for surface elevation change" }, { "@type": "CreativeWork", "name": "Soil surface elevation change along a tidal freshwater forested wetland to marsh transition" }, { "@type": "CreativeWork", "name": "The effect of saltwater intrusion on belowground decomposition" }, { "@id": "https://doi.org/10.1007/s10021-012-9551-1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-012-9551-1" }, "name": "Ecosystem development after mangrove wetland creation: plant-soil change across a 20-year chronosequence" }, { "@id": "https://doi.org/10.1007/s13157-012-0297-5", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-012-0297-5" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864039865" } ], "name": "Littoraria irrorata growth and survival in a sediment-restored salt marsh" }, { "@type": "CreativeWork", "name": "Climate change and tidally influenced freshwater forested wetlands of the southeast: understanding functional ecological attributes of forest transitions to marsh-year 1" }, { "@type": "CreativeWork", "name": "Restoring salt marsh resilience and ecosystem health in a changing environment" }, { "@type": "CreativeWork", "name": "Sediment and soil dynamics in mangrove ecosystems of Florida" }, { "@type": "CreativeWork", "name": "Sediment addition as a mechanism to restore ecosystem function to submerged salt marshes" }, { "@id": "https://doi.org/10.1890/09-2128.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/09-2128.1" }, "name": "Controls on resilience and stability in a sediment subsidized salt marsh" }, { "@id": "https://doi.org/10.1111/j.1526-100x.2010.00718.x", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1526-100x.2010.00718.x" }, "name": "Restoring ecological function to a submerged salt marsh" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "urn", "value": "etd-03312009-143854" }, "name": "Remediating the effects of climate change-induced submergence on salt marsh ecosystem functions" }, { "@type": "CreativeWork", "name": "The beneficial reuse of oilfield produced water" } ] }, "@type": "Person", "affiliation": { "@id": "https://doi.org/10.13039/100000201", "@type": "Organization", "alternateName": "U.S. Geological Survey", "name": "U.S. Department of the Interior" }, "familyName": "Stagg", "givenName": "Camille", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "36471205600" }, "mainEntityOfPage": "https://orcid.org/0000-0002-1125-7253", "name": "Camille LaFosse Stagg", "url": "https://www.usgs.gov/staff-profiles/camille-l-stagg" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Camille L. Stagg", "display_name_alternatives": [ "C. L. Stagg", "Camille L. Stagg", "Camille Stagg", "Camille LaFosse Stagg" ], "ids": { "openalex": "https://openalex.org/A5002445859", "orcid": "https://orcid.org/0000-0002-1125-7253", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=36471205600&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0002-1125-7253", "topics": [ { "count": 65, "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10779", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 39, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 16, "display_name": "Coastal Dynamics and Climate Change Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10647", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } }, { "count": 9, "display_name": "Climate Change and Paleoclimatology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10017", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 9, "display_name": "Global Analysis of Ecosystem Services and Land Use", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10226", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 8, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 7, "display_name": "Biodiversity Conservation and Ecosystem Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10005", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 7, "display_name": "Ecological Dynamics of Marine Environments", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10643", "subfield": { "display_name": "Oceanography", "id": "https://openalex.org/subfields/1910" } }, { "count": 6, "display_name": "Aeolian Geomorphology and Wind Erosion Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T12383", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } }, { "count": 6, "display_name": "Plant Responses to Flooding Stress", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T12472", "subfield": { "display_name": "Plant Science", "id": "https://openalex.org/subfields/1110" } }, { "count": 5, "display_name": "Challenges and Policy Implications of Biodiversity Offsets", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13438", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 5, "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13388", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 4, "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11311", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 4, "display_name": "Importance of Marine Spatial Planning in Ecosystem Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12414", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 3, "display_name": "Meta-analysis in Ecology and Agriculture Research", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T14137", "subfield": { "display_name": "Ecology, Evolution, Behavior and Systematics", "id": "https://openalex.org/subfields/1105" } }, { "count": 2, "display_name": "Sedimentary Processes in Earth's Geology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10965", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } }, { "count": 2, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Anticipating Critical Transitions in Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13377", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10004", "subfield": { "display_name": "Soil Science", "id": "https://openalex.org/subfields/1111" } }, { "count": 2, "display_name": "Application of Constructed Wetlands for Wastewater Treatment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11624", "subfield": { "display_name": "Industrial and Manufacturing Engineering", "id": "https://openalex.org/subfields/2311" } }, { "count": 1, "display_name": "Digital Soil Mapping Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10770", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 1, "display_name": "Tropical Cyclone Intensity and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11483", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 1, "display_name": "Land Use Change and Environmental Impact in China", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13203", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 1, "display_name": "Urban Metabolism and Sustainability Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12643", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 1, "display_name": "Molecular Systematics of Gesneriaceae and Allies", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Biochemistry, Genetics and Molecular Biology", "id": "https://openalex.org/fields/13" }, "id": "https://openalex.org/T14049", "subfield": { "display_name": "Molecular Biology", "id": "https://openalex.org/subfields/1312" } } ], "updated_date": "2024-05-23T02:08:26.838009" }
}