Item talk:Q49366
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:57:26.258211", "name": "Rachel R Sleeter", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-3477-0436" } ], "jobTitle": "Geographer", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:57:26.263599", "affiliatedOrganization": { "@type": "Organization", "name": "Water Resources Mission Area", "url": "https://www.usgs.gov/mission-areas/water-resources" }, "roleName": "Geographer" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Geographer with the Water Resources Mission Area" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Rachel Sleeter is a Research Geographer who develops methods for various applications ranging from terrestrial ecosystem carbon modeling, ecosystem services assessments, land use/land cover trends for the United States, and geospatial tool development for population dynamics." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "I started my career with the U.S. Geological Survey (USGS) in 2000, directly after graduating with a B.S. in Geography from University of Oregon. I initially worked for the Earth Science Information Center in Menlo Park, CA. where I became an expert on USGS data products, outreach and public needs. At this time I continued on as a student and obtained my Masters Degree in Geography from San Jose State University. My thesis work motivated me to pursue Geographic Information Systems (GIS) and Remote Sensing as a platform for accomplishing research on new geographic mapping methods. Dasymetric mapping for population density became my primary focus in my graduate work and also for various USGS hazard vulnerability applications. We built a Dasymetric Mapping Tool, an ArcGIS enabled tool, that is publically available to download. This tool automates the interpolation process used to allocate census population to suitable urban land use and cover cells. I continue to integrate this tool into many USGS projects and work with the requests from the academic and professional community.Currently, I am developing an integrated modeling framework for the Great Dismal Swamp ecosystem, where net ecosystem carbon balance, natural disturbance, and land management can be evaluated with scenarios. Multi-year,in situfield collection of the ecological and biological processes will be used to develop a baseline carbon budget. The baseline carbon budget for the Great Dismal Swamp is input into a state and transition simulation model coupled with a stock-flow model. Future scenarios will be modeled to evaluate priority ecosystem services and assist the U.S. Fish and Wildlife Service with land management decisions. This research is funded and led by the Climate and Land Use Change Mission Area as part of the LandCarbon program and represents one part of a multi-partner project with the U.S. Fish and Wildlife Service, The Nature Conservancy, and George Mason, Clemson, East Carolina, and Southern Methodist Universities.I have also been involved with LandCarbon at the national scale. I worked as part of a team to develop modeling inputs to integrate the comprehensive results from 1970-2000 Land Cover Trends data with global climate scenarios to spatially represent land use and cover out to 2100. Since the release of the first LandCarbon assessment for the conterminous United States, we adopted a state and transition modeling framework that uses a stock-flow model to track carbon flows. The model is referred to as the Land Use and Carbon Scenario Simulator (LUCAS). The LUCAS model is highly flexible, capable of running on local desktop workstations or in supercomputing environments (we are running extensive Monte Carlo simulations using NASA AMES's Pleiades supercomputer). This work represents an exciting breakthrough in the ability to model future changes in LULC and ecosystem carbon dynamics." } ], "email": "rsleeter@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/rachel-r-sleeter", "affiliation": [], "hasCredential": [], "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Geo-Spatial Processing and Analysis" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "State-and-Transition Simulation Modeling" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Terrestrial Carbon Cycles" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Ecosystem Disturbance" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Population Dynamics" } ], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:57:26.258218" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0003-3477-0436", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1002/wat2.1728", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wat2.1728" }, "name": "Opportunities and challenges for precipitation forcing data in post\u2010wildfire hydrologic modeling applications" }, { "@type": "CreativeWork", "name": "Modeling the Impacts of Hydrology and Management on Carbon Balance at the Great Dismal Swamp, Virginia and North Carolina, USA. " }, { "@id": "https://doi.org/10.5066/p970w305", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p970w305" }, "name": "Model parameters and output of net ecosystem carbon balance for the Great Dismal Swamp, Virginia and North Carolina, USA" }, { "@id": "https://doi.org/10.5066/p9c7hyrv", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9c7hyrv" }, "name": "Satellite-Derived Training Data for Automated Flood Detection in the Continental U.S." }, { "@id": "https://doi.org/10.1016/j.ecolecon.2018.08.002", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolecon.2018.08.002" }, "name": "Estimating the Societal Benefits of Carbon Dioxide Sequestration Through Peatland Restoration" }, { "@id": "https://doi.org/10.5066/p9kbrso4", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/p9kbrso4" }, "name": "Soil flux (CO2, CH4), soil temperature, and soil moisture measurements at the Great Dismal Swamp National Wildlife Refuge (2015 - 2017)" }, { "@id": "https://doi.org/10.1186/s13021-017-0070-4", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1186/s13021-017-0070-4" }, "name": "A carbon balance model for the great dismal swamp ecosystem" }, { "@id": "https://doi.org/10.5066/f7kw5d6d", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5066/f7kw5d6d" }, "name": "Historic Simulation of Net Ecosystem Carbon Balance for the Great Dismal Swamp" }, { "@id": "https://doi.org/10.3934/environsci.2015.3.668", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3934/environsci.2015.3.668" }, "name": "Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model" }, { "@id": "https://doi.org/10.3390/land3020362", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land3020362" }, "name": "Land-use threats and protected areas: a scenario-based, landscape level approach" }, { "@id": "https://doi.org/10.1061/(asce)nh.1527-6996.0000161", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)nh.1527-6996.0000161" }, "name": "Regional analysis of social characteristics for evacuation resource planning: ARkStorm scenario" }, { "@id": "https://doi.org/10.3133/fs20083010", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20083010" }, "name": "A New Method for Mapping Population Distribution" }, { "@id": "https://doi.org/10.3133/tm11c2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/tm11c2" }, "name": "Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods" } ] }, "@type": "Person", "affiliation": { "@type": "Organization", "alternateName": "Hydrologic Remote Sensing Branch - Water Mission Area", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2928" }, "name": "US Geological Survey" }, "alumniOf": [ { "@type": "Organization", "alternateName": "Geography", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "7161" }, "name": "San Jose State University" }, { "@type": "Organization", "alternateName": "Geography", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3265" }, "name": "University of Oregon" } ], "familyName": "Sleeter", "givenName": "Rachel", "mainEntityOfPage": "https://orcid.org/0000-0003-3477-0436" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Rachel Sleeter", "display_name_alternatives": [ "Rachel R. Sleeter", "R. R. Sleeter", "Rachel Sleeter", "R. Sleeter" ], "ids": { "openalex": "https://openalex.org/A5042134657", "orcid": "https://orcid.org/0000-0003-3477-0436" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0003-3477-0436", "topics": [ { "count": 8, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 7, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 7, "display_name": "Global Analysis of Ecosystem Services and Land Use", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10226", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 5, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10779", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 2, "display_name": "Impact of Nighttime Light Data on Various Fields", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11963", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13388", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 2, "display_name": "Spatial Microsimulation Models for Policy Analysis", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Decision Sciences", "id": "https://openalex.org/fields/18" }, "id": "https://openalex.org/T14509", "subfield": { "display_name": "Management Science and Operations Research", "id": "https://openalex.org/subfields/1803" } }, { "count": 2, "display_name": "Climate Change Impacts on Forest Carbon Sequestration", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11753", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 2, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Hyperspectral Image Analysis and Classification", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10689", "subfield": { "display_name": "Media Technology", "id": "https://openalex.org/subfields/2214" } }, { "count": 2, "display_name": "Climate Change and Variability Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10029", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Understanding Human Mobility Patterns", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T11980", "subfield": { "display_name": "Transportation", "id": "https://openalex.org/subfields/3313" } }, { "count": 1, "display_name": "Community Resilience to Natural Disasters", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T10747", "subfield": { "display_name": "Sociology and Political Science", "id": "https://openalex.org/subfields/3312" } }, { "count": 1, "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13890", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 1, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 1, "display_name": "Challenges and Policy Implications of Biodiversity Offsets", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13438", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 1, "display_name": "Species Distribution Modeling and Climate Change Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10895", "subfield": { "display_name": "Ecological Modeling", "id": "https://openalex.org/subfields/2302" } }, { "count": 1, "display_name": "Discrete Choice Models in Economics and Health Care", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Economics, Econometrics and Finance", "id": "https://openalex.org/fields/20" }, "id": "https://openalex.org/T10841", "subfield": { "display_name": "Economics and Econometrics", "id": "https://openalex.org/subfields/2002" } }, { "count": 1, "display_name": "Arctic Permafrost Dynamics and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11333", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 1, "display_name": "Tropical Cyclone Intensity and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11483", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 1, "display_name": "Environmental Justice and Inequality in Urban Development", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T12259", "subfield": { "display_name": "Sociology and Political Science", "id": "https://openalex.org/subfields/3312" } }, { "count": 1, "display_name": "Influence of Built Environment on Active Travel", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T10298", "subfield": { "display_name": "Transportation", "id": "https://openalex.org/subfields/3313" } }, { "count": 1, "display_name": "Breath Analysis Technology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T11667", "subfield": { "display_name": "Biomedical Engineering", "id": "https://openalex.org/subfields/2204" } } ], "updated_date": "2024-05-16T15:31:16.235291" }
}