Item talk:Q48989
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:57:42.397897", "name": "Jennifer Rover", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-3437-4030" } ], "jobTitle": "Research Geographer", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:57:42.405101", "affiliatedOrganization": { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" }, "roleName": "Research Geographer" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Research Geographer with the Earth Resources Observation and Science (EROS) Center" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Jennifer is a research geographer with the US Geological Survey at the USGS Earth Resources Observation and Science (EROS) Center in Sioux Falls, SD. Her research focus includes investigating and characterizing inland lake and wetland dynamics and related ecosystem components." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "Jennifer is a research geographer with the US Geological Survey at the USGS Earth Resources Observation and Science (EROS) Center in Sioux Falls, SD. Her research focus includes investigating and characterizing inland lake and wetland dynamics and related ecosystem components. Approaches utilize remotely sensed data and geographic information science to infer hydrological processes in lakes, rivers, and wetlands and assess influences from upland land cover and land cover change. Jennifer also leads the Applied Science component for Land Change Monitoring, Assessment, and Projection (LCMAP) initiative. The LCMAP Applied Science team develops innovative applications with time-series land cover change science products. New applications are relevant to partner and stakeholder needs while providing opportunities that enable user feedback to be incorporated into future research and product development. Engagement with the community by means of various mechanisms are an ongoing and important aspect of LCMAP." } ], "email": "jrover@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/jennifer-rover", "affiliation": [], "hasCredential": [], "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "geospatial analysis" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "remote sensing" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "spatial analysis" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "water cycle" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "surface water (non-marine)" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "aerial photography" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "geographic information systems" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "image analysis" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "water resources" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "land surface characteristics" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "land use change" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "surface water quality" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "wetland ecosystems" } ], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:57:42.397905" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-3437-4030", "@reverse": { "creator": [ { "@id": "https://doi.org/10.3390/land11020316", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land11020316" }, "name": "Analyzing the Effects of Land Cover Change on the Water Balance for Case Study Watersheds in Different Forested Ecosystems in the USA" }, { "@id": "https://doi.org/10.3133/fs20203024", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20203024" }, "name": "Land change monitoring, assessment, and projection" }, { "@id": "https://doi.org/10.3390/rs11030328", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11030328" }, "name": "Monitoring Landscape Dynamics in Central U.S. Grasslands with Harmonized Landsat-8 and Sentinel-2 Time Series Data" }, { "@id": "https://doi.org/10.1080/01431161.2018.1471545", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2018.1471545" }, "name": "An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries" }, { "@id": "https://doi.org/10.1080/01431161.2018.1430912", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2018.1430912" }, "name": "Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager" }, { "@id": "https://doi.org/10.3133/ofr20171166", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20171166" }, "name": "Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2018.04.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046810681" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2018.04.005" } ], "name": "Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska" }, { "@id": "https://doi.org/10.1007/s13157-016-0854-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-016-0854-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006108496" } ], "name": "Controls on the Geochemical Evolution of Prairie Pothole Region Lakes and Wetlands Over Decadal Time Scales" }, { "@id": "https://doi.org/10.1002/hyp.10756", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10756" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84952685437" } ], "name": "Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: Case study of Yukon Flats, Alaska" }, { "@id": "https://doi.org/10.1007/s00442-016-3572-y", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84957657792" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00442-016-3572-y" } ], "name": "Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations" }, { "@id": "https://doi.org/10.1201/b18210-20", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1201/b18210-20" }, "name": "Mapping Wetlands and Surface Water in the Prairie Pothole Region of North America" }, { "@id": "https://doi.org/10.1111/gcb.12759", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12759" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923111982" } ], "name": "Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area" }, { "@id": "https://doi.org/10.1080/01431161.2015.1004764", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2015.1004764" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923382274" } ], "name": "Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska" }, { "@id": "https://doi.org/10.3390/w6030694", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w6030694" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84899830040" } ], "name": "Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data" }, { "@id": "https://doi.org/10.3390/rs6109145", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs6109145" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923582917" } ], "name": "Effects of disturbance and climate change on ecosystem performance in the Yukon River basin boreal forest" }, { "@id": "https://doi.org/10.1016/j.isprsjprs.2014.06.013", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2014.06.013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904600333" } ], "name": "Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices" }, { "@id": "https://doi.org/10.1002/grl.50672", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/grl.50672" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880015098" } ], "name": "Controls on recent Alaskan lake changes identified from water isotopes and remote sensing" }, { "@id": "https://doi.org/10.1002/grl.50187", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876783138" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/grl.50187" } ], "name": "Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA" }, { "@id": "https://doi.org/10.1080/01431161.2012.742215", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870564249" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2012.742215" } ], "name": "MODIS-informed greenness responses to daytime land surface temperature fluctuations and wildfire disturbances in the Alaskan Yukon River Basin" }, { "@id": "https://doi.org/10.1029/2012gb004306", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870233914" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012gb004306" } ], "name": "Carbon dioxide and methane emissions from the Yukon River system" }, { "@id": "https://doi.org/10.1080/01431161.2011.643507", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2011.643507" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84857519683" } ], "name": "Establishing water body areal extent trends in interior Alaska from multitemporal Landsat data" }, { "@id": "https://doi.org/10.1016/j.jag.2012.03.019", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864514196" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2012.03.019" } ], "name": "Estimating aboveground biomass in interior Alaska with Landsat data and field measurements" }, { "@id": "https://doi.org/10.4319/lo.2012.57.2.0597", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4319/lo.2012.57.2.0597" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862682510" } ], "name": "The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent" }, { "@id": "https://doi.org/10.4133/1.3614221", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4133/1.3614221" }, "name": "Surface Water Extent Trends in Interior Alaska (1979\u20132009)" }, { "@id": "https://doi.org/10.1007/s13157-011-0146-y", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960010252" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-011-0146-y" } ], "name": "Classifying the hydrologic function of prairie potholes with remote sensing and GIS" }, { "@id": "https://doi.org/10.1080/01431161.2010.510811", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2010.510811" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-82055173070" } ], "name": "On the terminology of the spectral vegetation index (NIR - SWIR)/(NIR+SWIR)" }, { "@id": "https://doi.org/10.1080/01431161003667455", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951788882" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161003667455" } ], "name": "A self-trained classification technique for producing 30 m percent-water maps from Landsat data" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85037523712" }, "name": "Ecosystem modeling based upon remote sensing, site potential, and weather to monitor vegetation responses to climate, management, and disturbances" } ] }, "@type": "Person", "affiliation": { "@type": "Organization", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "110093" }, "name": "US Geological Survey Earth Resources Observation and Science Center" }, "familyName": "Rover", "givenName": "Jennifer", "mainEntityOfPage": "https://orcid.org/0000-0002-3437-4030", "name": "J. Rover" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Jennifer Rover", "display_name_alternatives": [ "Jennifer A. Rover", "J. Rover", "Jennifer R. Rover", "Jennifer Rover" ], "ids": { "openalex": "https://openalex.org/A5073959768", "orcid": "https://orcid.org/0000-0002-3437-4030" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0002-3437-4030", "topics": [ { "count": 16, "display_name": "Arctic Permafrost Dynamics and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11333", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 9, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 9, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 8, "display_name": "Mapping Forests with Lidar Remote Sensing", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11164", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 7, "display_name": "Arctic Sea Ice Variability and Decline", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11459", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 7, "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10111", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 6, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 5, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 5, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 4, "display_name": "Importance and Conservation of Freshwater Biodiversity", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10302", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 4, "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10032", "subfield": { "display_name": "Oceanography", "id": "https://openalex.org/subfields/1910" } }, { "count": 4, "display_name": "Digital Soil Mapping Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10770", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 3, "display_name": "Climate Change and Paleoclimatology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10017", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 3, "display_name": "Soil Erosion and Agricultural Sustainability", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10889", "subfield": { "display_name": "Soil Science", "id": "https://openalex.org/subfields/1111" } }, { "count": 3, "display_name": "Global Forest Drought Response and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10266", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 3, "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13388", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 2, "display_name": "Global Analysis of Ecosystem Services and Land Use", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10226", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 2, "display_name": "Species Distribution Modeling and Climate Change Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10895", "subfield": { "display_name": "Ecological Modeling", "id": "https://openalex.org/subfields/2302" } }, { "count": 2, "display_name": "Eutrophication and Harmful Algal Blooms", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10236", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 2, "display_name": "Resilience of Traditional Irrigation Communities in Southwest USA", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T13939", "subfield": { "display_name": "Anthropology", "id": "https://openalex.org/subfields/3314" } }, { "count": 1, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 1, "display_name": "Environmental DNA in Biodiversity Monitoring", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12640", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 1, "display_name": "Geological Evolution of the Arctic Region", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13193", "subfield": { "display_name": "Geology", "id": "https://openalex.org/subfields/1907" } }, { "count": 1, "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12543", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 1, "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10779", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } } ], "updated_date": "2024-05-15T10:34:15.594336" }
}