Item talk:Q47876
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:56:35.885090", "name": "R. Blaine McCleskey", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2521-8052" } ], "jobTitle": "Research Chemist", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:56:35.895201", "affiliatedOrganization": { "@type": "Organization", "name": "Water Resources Mission Area", "url": "https://www.usgs.gov/mission-areas/water-resources" }, "roleName": "Research Chemist" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Research Chemist with the Water Resources Mission Area" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Blaine McCleskey is a Research Chemist for the USGS Water Resources Mission Area." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "Blaine McCleskey started his career with the U.S. Geological Survey in 1997 as a chemist in the National Research Program. In 2010, he obtained a Ph.D. from the University of Colorado where he developed a method to calculate the electrical conductivity of natural waters from its chemical composition. He is currently involved in several research projects in Yellowstone National Park, a wildfire affected watershed, and acid mine drainage sites.EducationB.S. - Biochemistry, College of Charleston, SC, 1995M.S. - Environmental Studies (Science track), University of Charleston, SC, 1997Ph.D. - Environmental Engineering (Hydrologic Sciences Program), University of Colorado, 2010Blaine McCleskey also runs and maintains the USGSRedox Chemistry Laboratory,where analytical methods for determining the redox distributions of iron, arsenic, chromium, and antimony have been developed (see puplished methods below). In addition, the lab supports many USGS projects by providing iron, arsenic, chromium, antimony, and selenium redox determinations. The lab is equipped with an ICP-AES, IC, GFAAS, HGAAS, UV-VIS spectrophotometer, and an autotitrator and we are capable of determining most inorganic constituents and specialize in difficult matrices (acid mine waters, geothermal waters, and saline waters)." } ], "email": "rbmccles@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/r-blaine-mccleskey", "affiliation": [], "hasCredential": [], "knowsAbout": [], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:56:35.885095" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-2521-8052", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1029/2023gc011154", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023gc011154" }, "name": "Chemistry, Growth, and Fate of the Unique, Short\u2010Lived (2019\u20132020) Water Lake at the Summit of K\u012blauea Volcano, Hawaii" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2023.105684", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2023.105684" }, "name": "Salinity and total dissolved solids measurements for natural waters: An overview and a new salinity method based on specific conductance and water type" }, { "@id": "https://doi.org/10.3133/pp1885e", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/pp1885e" }, "name": "Groundwater chemistry and hexavalent chromium" }, { "@id": "https://doi.org/10.1029/2021gc009904", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gc009904" }, "name": "Quantifying Non\u2010Thermal Silicate Weathering Using Ge/Si and Si Isotopes in Rivers Draining the Yellowstone Plateau Volcanic Field, USA" }, { "@id": "https://doi.org/10.1029/2020gc009589", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020gc009589" }, "name": "The Systematics of Chlorine, Lithium, and Boron and \u03b437Cl, \u03b47Li, and \u03b411B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field" }, { "@id": "https://doi.org/10.1029/2019gc008848", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85088591116" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019gc008848" } ], "name": "Hydrothermal Activity in the Southwest Yellowstone Plateau Volcanic Field" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2020.137236", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2020.137236" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85080045988" } ], "name": "Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2020.107021", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089550326" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2020.107021" } ], "name": "Sources, fate, and flux of riverine solutes in the Southwest Yellowstone Plateau Volcanic Field, USA" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2020.140635", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2020.140635" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85087592411" } ], "name": "Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2019.104458", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074240159" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2019.104458" } ], "name": "Sources, fate, and flux of geothermal solutes in the Yellowstone and Gardner Rivers, Yellowstone National Park, WY" }, { "@id": "https://doi.org/10.1016/j.gca.2019.09.012", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2019.09.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85072629371" } ], "name": "On the thermodynamics and kinetics of scorodite dissolution" }, { "@id": "https://doi.org/10.1051/e3sconf/20199807020", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1051/e3sconf/20199807020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85067297850" } ], "name": "Thermal water chemistry of Yellowstone National Park after 24 years of research" }, { "@id": "https://doi.org/10.1029/2017jg004349", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2017jg004349" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052379860" } ], "name": "Fire, Flood, and Drought: Extreme Climate Events Alter Flow Paths and Stream Chemistry" }, { "@id": "https://doi.org/10.3133/ofr20181071", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20181071" }, "name": "Concentrations of lead and other inorganic constituents in samples of raw intake and treated drinking water from the municipal water filtration plant and residential tapwater in Chicago, Illinois, and East Chicago, Indiana, July\u2013December 2017" }, { "@id": "https://doi.org/10.1111/1462-2920.13728", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1462-2920.13728" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021137325" } ], "name": "Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2017.04.010", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2017.04.010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85018519057" } ], "name": "Thermodynamic properties in the Fe(II)-Fe(III)-As(V)-HClO<inf>4</inf>\u2013H<inf>2</inf>O and Fe(II)-Fe(III)-As(V)-HCl\u2013H<inf>2</inf>O systems from 5 to 90 \u00b0C" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2016.08.006", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2016.08.006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983680584" } ], "name": "Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY" }, { "@id": "https://doi.org/10.1007/s13157-016-0854-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-016-0854-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006108496" } ], "name": "Controls on the Geochemical Evolution of Prairie Pothole Region Lakes and Wetlands Over Decadal Time Scales" }, { "@id": "https://doi.org/10.1130/g37478.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959906182" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g37478.1" } ], "name": "Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA" }, { "@id": "https://doi.org/10.1201/b20466-66", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1201/b20466-66" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017002299" } ], "name": "Geochemical modeling and thermodynamic properties of arsenic species" }, { "@id": "https://doi.org/10.1007/s00128-016-1882-8", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00128-016-1882-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978127397" } ], "name": "Investigation of Total and Hexavalent Chromium in Filtered and Unfiltered Groundwater Samples at the Tucson International Airport Superfund Site" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2016.08.006", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983443306" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2016.08.006" } ], "name": "Ionic molal conductivities, activity coefficients, and dissociation constants of HAsO<inf>4</inf>2\u00a0\u2212 and H<inf>2</inf>AsO<inf>4</inf>\u2212 from 5 to 90\u00a0\u00b0C and ionic strengths from 0.001 up to 3\u00a0mol\u00a0kg\u2212\u00a01 and applications in natural systems" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2016.10.010", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2016.10.010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006263603" } ], "name": "Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2014.12.012", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2014.12.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84943665836" } ], "name": "Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada" }, { "@id": "https://doi.org/10.3133/sir20155126", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20155126" }, "name": "Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota\u2014Effects of a changing climate" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2015.08.007", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2015.08.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84940883337" } ], "name": "Cr(VI) occurrence and geochemistry in water from public-supply wells in California" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2015.04.012", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2015.04.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84943659884" } ], "name": "From extreme pH to extreme temperature: An issue in honor of the geochemical contributions of Kirk Nordstrom, USGS hydrogeochemist" }, { "@id": "https://doi.org/10.1088/1748-9326/10/8/084007", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/10/8/084007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84948419769" } ], "name": "The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2014.10.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2014.10.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84912014161" } ], "name": "Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems" }, { "@id": "https://doi.org/10.1002/jgrb.50251", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883633187" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jgrb.50251" } ], "name": "Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics" }, { "@id": "https://doi.org/10.1021/es402188r", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es402188r" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883539771" } ], "name": "New method for electrical conductivity temperature compensation" }, { "@id": "https://doi.org/10.1016/j.gca.2011.10.031", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84855492967" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2011.10.031" } ], "name": "A new method of calculating electrical conductivity with applications to natural waters" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864886789" }, "name": "Arsenic in Yellowstone's thermal waters: Trends and anomalies" }, { "@id": "https://doi.org/10.4319/lom.2012.10.952", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4319/lom.2012.10.952" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872418758" } ], "name": "Comparison of electrical conductivity calculation methods for natural waters" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883292123" }, "name": "Effects of flow regime on stream turbidity and suspended solids after wildfire, Colorado Front Range" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883282500" }, "name": "Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2011.09.002", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84855454806" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2011.09.002" } ], "name": "Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2012.07.019", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2012.07.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868582353" } ], "name": "Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park" }, { "@id": "https://doi.org/10.3133/ds632", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ds632" }, "name": "Water chemistry and electrical conductivity database for rivers in Yellowstone National Park, Wyoming" }, { "@id": "https://doi.org/10.3133/ofr20121104", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20121104" }, "name": "Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011" }, { "@id": "https://doi.org/10.1016/j.gca.2011.05.036", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2011.05.036" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960325232" } ], "name": "Ammonium in thermal waters of Yellowstone National Park: Processes affecting speciation and isotope fractionation" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2011.03.110", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2011.03.110" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955973719" } ], "name": "Electrical conductivity method for natural waters" }, { "@id": "https://doi.org/10.1021/je101012n", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79951545014" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/je101012n" } ], "name": "Electrical conductivity of electrolytes found in natural waters from (5 to 90) \u00b0c" }, { "@id": "https://doi.org/10.1016/j.gca.2011.05.028", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960323763" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2011.05.028" } ], "name": "Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation" }, { "@id": "https://doi.org/10.3133/ofr20111159", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20111159" }, "name": "Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2011.03.008", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2011.03.008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955372836" } ], "name": "Vibrational, X-ray absorption, and M\u00f6ssbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California" }, { "@id": "https://doi.org/10.1038/msb.2010.30", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/msb.2010.30" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77953272819" } ], "name": "Ecological distribution and population physiology defined by proteomics in a natural microbial community" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85055187561" }, "name": "Fate of thermal solutes for Gibbon and Firehole Rivers, Yellowstone National Park, USA" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860150218" }, "name": "Fate of thermal solutes for Gibbon and Firehole Rivers, Yellowstone National Park, USA" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2010.03.014", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2010.03.014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77953619844" } ], "name": "Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. I. Low-flow discharge and major solute chemistry." }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2010.05.004", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77956736605" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2010.05.004" } ], "name": "Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry" }, { "@id": "https://doi.org/10.3133/ofr20091292", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20091292" }, "name": "Geochemistry of standard mine waters, Gunnison County, Colorado, July 2009" }, { "@id": "https://doi.org/10.1016/j.epsl.2008.12.032", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2008.12.032" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-60249099220" } ], "name": "Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2008.11.019", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58349107060" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2008.11.019" } ], "name": "Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters" }, { "@id": "https://doi.org/10.3133/ofr20071020", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20071020" }, "name": "Ground- and surface-water chemistry of Handcart Gulch, Park County, Colorado, 2003-2006" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2008.03.004", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2008.03.004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-46149110497" } ], "name": "Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers" }, { "@id": "https://doi.org/10.3133/ofr20061339", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20061339" }, "name": "Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003-2005" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2006.11.008", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846276177" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2006.11.008" } ], "name": "Diel mercury-concentration variations in streams affected by mining and geothermal discharge" }, { "@id": "https://doi.org/10.3133/sir20065165", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20065165" }, "name": "Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico" }, { "@id": "https://doi.org/10.3133/ofr20071241", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20071241" }, "name": "Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007" }, { "@id": "https://doi.org/10.1021/es070273v", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34547670383" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es070273v" } ], "name": "Thioarsenates in geothermal waters of yellowstone National Park: Determination, preservation, and geochemical importance" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868618220" }, "name": "Mineral solubility and weathering rate constraints on metal concentrations in ground waters of mineralized areas near Questa, New Mexico" }, { "@id": "https://doi.org/10.3133/sir20065028", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20065028" }, "name": "Questa baseline and pre-mining ground-water quality investigation. 20. Water chemistry of the Red River and selected seeps, tributaries, and precipitation, Taos County, New Mexico, 2000-2004" }, { "@id": "https://doi.org/10.1127/0935-1221/2006/0018-0175", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1127/0935-1221/2006/0018-0175" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646582648" } ], "name": "Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe<inf>2</inf>(SO<inf>4</inf>)<inf>3</inf>(H<inf>2</inf>O)<inf>5</inf>" }, { "@id": "https://doi.org/10.1016/j.gca.2004.11.020", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2004.11.020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-19044390554" } ], "name": "Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2004.10.001", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-14544294441" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2004.10.001" } ], "name": "Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California" }, { "@id": "https://doi.org/10.3133/sir20055050", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20055050" }, "name": "Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003" }, { "@id": "https://doi.org/10.3133/sir20055088", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20055088" }, "name": "Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03" }, { "@id": "https://doi.org/10.1007/s00254-004-1178-x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-16444362329" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00254-004-1178-x" } ], "name": "Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream" }, { "@id": "https://doi.org/10.3133/ofr20041316", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20041316" }, "name": "Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park Wyoming, 2001-2002" }, { "@id": "https://doi.org/10.1016/j.apgeochem.2004.01.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeochem.2004.01.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-2042529330" } ], "name": "Preservation of water samples for arsenic(III/V) determinations: An evaluation of the literature and new analytical results" }, { "@id": "https://doi.org/10.3133/ofr20041341", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20041341" }, "name": "Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses" }, { "@id": "https://doi.org/10.1023/b:wate.0000019934.64939.f0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/b:wate.0000019934.64939.f0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-1842790627" } ], "name": "Relative effect of temperature and pH on diel cycling of dissolved trace elements in prickly pear creek, Montana" }, { "@id": "https://doi.org/10.1016/s0039-9140(03)00282-0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0039-9140(03)00282-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0142153158" } ], "name": "A new cation-exchange method for accurate field speciation of hexavalent chromium" }, { "@id": "https://doi.org/10.3133/ofr03244", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr03244" }, "name": "Chemical analyses of ground and surface waters, Ester Dome, central Alaska, 2000-2001" }, { "@id": "https://doi.org/10.3133/ofr03148", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr03148" }, "name": "Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico" }, { "@id": "https://doi.org/10.3133/ofr03492", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr03492" }, "name": "Surface and ground water geochemistry near the Donlin Creek gold deposit, southwestern Alaska" }, { "@id": "https://doi.org/10.3133/ofr0290", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr0290" }, "name": "Trace, minor and major element data for ground water near Fairbanks, Alaska, 1999-2000" }, { "@id": "https://doi.org/10.3133/ofr02382", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr02382" }, "name": "Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000" }, { "@id": "https://doi.org/10.1021/es010816f", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035477803" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es010816f" } ], "name": "Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations" }, { "@id": "https://doi.org/10.3133/ofr0149", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr0149" }, "name": "Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998" }, { "@id": "https://doi.org/10.1021/es980684z", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es980684z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033105862" } ], "name": "New method for the direct determination of dissolved Fe(III) concentration in acid mine waters" } ] }, "@type": "Person", "affiliation": { "@id": "https://doi.org/10.13039/100000201", "@type": "Organization", "alternateName": "U.S. Geological Survey", "name": "U.S. Department of the Interior" }, "alumniOf": { "@type": "Organization", "alternateName": "Environmental Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1877" }, "name": "University of Colorado Boulder" }, "familyName": "McCleskey", "givenName": "Richard", "identifier": [ { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "6602834634" }, { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "954763" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "55557128200" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "57220754765" } ], "mainEntityOfPage": "https://orcid.org/0000-0002-2521-8052" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "R. Blaine McCleskey", "display_name_alternatives": [ "R. McCleskey", "R. Blaine Mccleskey", "Blaine B. McCleskey", "Blaine R. McCleskey", "R MCCLESKEY", "R. B. McCleskey" ], "ids": { "openalex": "https://openalex.org/A5011467787", "orcid": "https://orcid.org/0000-0002-2521-8052", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=6602834634&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0002-2521-8052", "topics": [ { "count": 39, "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10398", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 35, "display_name": "Acid Mine Drainage Remediation and Biogeochemistry", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11923", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 20, "display_name": "Groundwater Flow and Transport Modeling", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10894", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 20, "display_name": "Water Quality and Hydrogeology Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12773", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 15, "display_name": "Environmental Impact of Heavy Metal Contamination", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10139", "subfield": { "display_name": "Pollution", "id": "https://openalex.org/subfields/2310" } }, { "count": 10, "display_name": "Arsenic Contamination in Natural Waters", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10710", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 9, "display_name": "Machine Learning for Mineral Prospectivity Mapping", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T12157", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 8, "display_name": "Analytical Chemistry Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Chemistry", "id": "https://openalex.org/fields/16" }, "id": "https://openalex.org/T10180", "subfield": { "display_name": "Analytical Chemistry", "id": "https://openalex.org/subfields/1602" } }, { "count": 7, "display_name": "Tectonic and Geochronological Evolution of Orogens", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10001", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 7, "display_name": "Aqueous Two-Phase Systems in Separation Science", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Chemical Engineering", "id": "https://openalex.org/fields/15" }, "id": "https://openalex.org/T11936", "subfield": { "display_name": "Filtration and Separation", "id": "https://openalex.org/subfields/1506" } }, { "count": 7, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 6, "display_name": "Chemistry of Actinide and Lanthanide Elements", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Chemistry", "id": "https://openalex.org/fields/16" }, "id": "https://openalex.org/T10973", "subfield": { "display_name": "Inorganic Chemistry", "id": "https://openalex.org/subfields/1604" } }, { "count": 6, "display_name": "Assessment of Surface Water Quality", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11634", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 5, "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11311", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 5, "display_name": "Marine Microbial Diversity and Biogeography", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11791", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 5, "display_name": "Occurrence and Health Effects of Drinking Water Disinfection By-Products", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11493", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 5, "display_name": "Geochemistry of Manganese Oxides in Sedimentary Environments", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11740", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 4, "display_name": "RNA Sequencing Data Analysis", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Biochemistry, Genetics and Molecular Biology", "id": "https://openalex.org/fields/13" }, "id": "https://openalex.org/T10015", "subfield": { "display_name": "Molecular Biology", "id": "https://openalex.org/subfields/1312" } }, { "count": 4, "display_name": "Electrochemical Detection of Heavy Metal Ions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Chemistry", "id": "https://openalex.org/fields/16" }, "id": "https://openalex.org/T11434", "subfield": { "display_name": "Electrochemistry", "id": "https://openalex.org/subfields/1603" } }, { "count": 4, "display_name": "Biohydrometallurgical Processes for Metal Extraction", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T11073", "subfield": { "display_name": "Biomedical Engineering", "id": "https://openalex.org/subfields/2204" } }, { "count": 4, "display_name": "Toxicology and Environmental Impacts of Mercury Contamination", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10819", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 3, "display_name": "Landslide Hazards and Risk Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10535", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 3, "display_name": "Impact of Persistent Organic Pollutants on Environment and Health", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10122", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 3, "display_name": "On-line Monitoring of Wastewater Quality", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T14249", "subfield": { "display_name": "Industrial and Manufacturing Engineering", "id": "https://openalex.org/subfields/2311" } }, { "count": 3, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } } ], "updated_date": "2024-05-21T01:33:23.558688" }
}