Item talk:Q45004
From geokb
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "affiliation": [], "award": [ "2022 American Geophysical Union Edward A. Flinn III Award (group award)", "2017 Geologic Society of America Hydrogeology Division Kohout Early Career Award", "Exceptional rating, USGS performance review 2013, 14, 15, 16, 18, 19, 21", "Syracuse University College of Arts and Sciences Doctoral Dissertation Prize, 2012" ], "description": [ { "@type": "TextObject", "abstract": "Research Hydrologist with the Water Resources Mission Area", "additionalType": "short description" }, { "@type": "TextObject", "abstract": "Martin Briggs (he/him) is a Research Hydrologist for the Hydrologic Remote Sensing Branch of the USGS Water Resources Mission Area Observing Systems Division.", "additionalType": "staff profile page introductory statement" }, { "@type": "TextObject", "abstract": "At the USGS Hydrologic Remote Sensing Branch (HRSB) Marty works on a wide range of pressing hydrological issues across climates and hydrogeological terrain. As a national office, one of HRSB\u2019s primary functions is to support regional USGS Water Science Centers through providing hydrogeophysical tools, training, and collaboration on novel water research. As central missions at the Branch are training and methods development, Marty often travels to provide workshops, participate in outreach events, and to field-test new methods that are then utilized for research applications. Although his specialty is in surface water/groundwater exchange processes, Marty works on a wide range of pressing national hydrological issues where geophysical and remotely sensed data lend insight. Marty also contributes to several Water Mission Area Programs including the Next Generation Water Observing System and co-advises graduate students at the University of Connecticut through a Cooperative Agreement, leveraging reimbursable projects. Marty asks that you please reach out if you are interested in discussing objectives, methods, and/or research related to his work.", "additionalType": "personal statement" } ], "email": "mbriggs@usgs.gov", "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "Ph.D., 2012. Syracuse University, (Hydro) Geology." }, { "@type": "EducationalOccupationalCredential", "name": "M.S., 2009. Colorado School of Mines. Hydrology." } ], "hasOccupation": [ { "@type": "OrganizationalRole", "affiliatedOrganization": { "@type": "Organization", "name": "Water Resources Mission Area", "url": "https://www.usgs.gov/mission-areas/water-resources" }, "roleName": "Research Hydrologist", "startDate": "2024-05-10T21:08:49.230946" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Development of new heat tracing methodology and refinement of existing methods for location and quantifying groundwater/surface water exchanges over a range of scales including the development of several software tools to improve accessibility to such methods. These tools include: VFLUX2, DTS-GUI, 1DTempPro2, GW-SW MST" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Extensive characterization of groundwater preferential groundwater discharge zones and related physical processes across a range of headwater and mainstem river settings nationally" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Repeat expeditions to Alaska as field team leader to characterize discontinuous permafrost dynamics using seismic, electrical, radar, thermal and mechanical methods coupled with processed-based models" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Measuring and modeling dual-domain mass transfer of contaminated groundwater and natural anoxic microzones involving the novel use of combined electrical and chemical methods" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Installation of sea water intrusion monitoring network on a remote Pacific atoll to monitor the effects of climate change and sea level rise on atoll fresh water and identify controlling geologic processes that were tested in a numerical modeling framework" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Innovative characterization of endangered shellfish and native brook trout habitat in a variety of systems, particularly in the context of groundwater discharge to surface water" } ], "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-3206-4132" }, { "@type": "PropertyValue", "propertyID": "GeoKB", "value": "https://geokb.wikibase.cloud/entity/Q45004" } ], "jobTitle": "Research Hydrologist", "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "groundwater" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "hydrodynamics" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "groundwater flow" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "hydrology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "percolation" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "saltwater intrusion" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "streamflow" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "hydrogeophysics" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "hydrogeology" } ], "memberOf": { "@type": "OrganizationalRole", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "name": "staff member", "startDate": "2024-05-10T21:08:49.227382" }, "name": "Martin A. Briggs", "url": "https://www.usgs.gov/staff-profiles/martin-briggs" }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0003-3206-4132", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1111/fwb.14287", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/fwb.14287" }, "name": "Effects of episodic stream dewatering on brook trout spatial population structure" }, { "@id": "https://doi.org/10.1002/hyp.15112", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.15112" }, "name": "Exploring landscape and geologic controls on spatial patterning of streambank groundwater discharge in a mixed land use watershed" }, { "@id": "https://doi.org/10.1111/gcb.16844", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16844" }, "name": "Closing the gap between science and management of cold\u2010water refuges in rivers and streams" }, { "@id": "https://doi.org/10.22541/essoar.169264765.51370864/v1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.169264765.51370864/v1" }, "name": "Advancing Heat-as-a-Tracer Groundwater Flux Estimates in Preferential Discharge Zones via Instrumentation and Methods" }, { "@id": "https://doi.org/10.1002/hyp.14939", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.14939" }, "name": "Shallow and local or deep and regional? Inferring source groundwater characteristics across mainstem riverbank discharge faces" }, { "@id": "https://doi.org/10.1111/eff.12705", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/eff.12705" }, "name": "Stabilising effects of karstic groundwater on stream fish communities" }, { "@id": "https://doi.org/10.1002/wat2.1646", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wat2.1646" }, "name": "Uncertainties in measuring and estimating water\u2010budget components: Current state of the science" }, { "@id": "https://doi.org/10.5194/egusphere-egu23-9288", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-9288" }, "name": "Illuminating Permeable Mineral Soil Groundwater Seepage Pathways Feeding Peatland Pools Using Thermal and Electrical Conductivity Signatures" }, { "@id": "https://doi.org/10.3133/sir20225089", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20225089" }, "name": "Interaction of a legacy groundwater contaminant plume with the Little Wind River from 2015 through 2017, Riverton Processing site, Wyoming" }, { "@id": "https://doi.org/10.1111/gwat.13194", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gwat.13194" }, "name": "GW/SW\u2010MST: A Groundwater/Surface\u2010Water Method Selection Tool" }, { "@id": "https://doi.org/10.5194/hess-26-3989-2022", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-26-3989-2022" }, "name": "Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams" }, { "@id": "https://doi.org/10.1029/2021wr030443", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr030443" }, "name": "Application of Recursive Estimation to Heat Tracing for Groundwater/Surface\u2010Water Exchange" }, { "@id": "https://doi.org/10.1029/2021wr030735", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr030735" }, "name": "Using Ensemble Data Assimilation to Estimate Transient Hydrologic Exchange Flow Under Highly Dynamic Flow Conditions" }, { "@id": "https://doi.org/10.1029/2021ea002140", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ea002140" }, "name": "Near\u2010Surface Geophysics Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science" }, { "@id": "https://doi.org/10.5194/hess-2021-622", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2021-622" }, "name": "Bedrock depth influences spatial patterns of summer baseflow, temperature, and flow disconnection for mountainous headwater streams" }, { "@id": "https://doi.org/10.3133/fs20223077", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20223077" }, "name": "A multiscale approach for monitoring groundwater discharge to headwater streams by the U.S. Geological Survey Next Generation Water Observing System Program\u2014An example from the Neversink Reservoir watershed, New York" }, { "@id": "https://doi.org/10.1007/978-3-030-95921-0_2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-030-95921-0_2" }, "name": "Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models" }, { "@id": "https://doi.org/10.1002/essoar.10509796.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10509796.1" }, "name": "Combining multiple electromagnetic methods, direct aquifer measurements, and modeling to inform ecological management on Palmyra Atoll" }, { "@id": "https://doi.org/10.3390/w14010011", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w14010011" }, "name": "Exploring Local Riverbank Sediment Controls on the Occurrence of Preferential Groundwater Discharge Points" }, { "@id": "https://doi.org/10.1002/essoar.10509797.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10509797.1" }, "name": "Variable depth to bedrock under mountain streams influences channel temperature, dewatering, and concurrent stream water gains and losses" }, { "@id": "https://doi.org/10.1002/eco.2295", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eco.2295" }, "name": "An ecohydrological typology for thermal refuges in streams and rivers" }, { "@id": "https://doi.org/10.1002/ppp.2100", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ppp.2100" }, "name": "Ground\u2010penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska" }, { "@id": "https://doi.org/10.1002/hyp.14184", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.14184" }, "name": "Evaluation of riverbed magnetic susceptibility for mapping biogeochemical hot spots in groundwater\u2010impacted rivers" }, { "@id": "https://doi.org/10.1038/s41467-021-21651-0", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-021-21651-0" }, "name": "Continental-scale analysis of shallow and deep groundwater contributions to streams" }, { "@id": "https://doi.org/10.1029/2020wr027995", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr027995" }, "name": "Characterizing Physical Properties of Streambed Interface Sediments Using In Situ Complex Electrical Conductivity Measurements" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2020.142909", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2020.142909" }, "name": "Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters" }, { "@id": "https://doi.org/10.1029/2020wr027904", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr027904" }, "name": "Using Heat to Trace Vertical Water Fluxes in Sediment Experiencing Concurrent Tidal Pumping and Groundwater Discharge" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2020.140074", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2020.140074" }, "name": "Characterizing the diverse hydrogeology underlying rivers and estuaries using new floating transient electromagnetic methodology" }, { "@id": "https://doi.org/10.1029/2020wr028027", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr028027" }, "name": "Improved Prediction of Management\u2010Relevant Groundwater Discharge Characteristics Throughout River Networks" }, { "@id": "https://doi.org/10.1007/s10533-020-00674-7", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10533-020-00674-7" }, "name": "Experimental shifts of hydrologic residence time in a sandy urban stream sediment\u2013water interface alter nitrate removal and nitrous oxide fluxes" }, { "@id": "https://doi.org/10.1002/hyp.13752", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13752" }, "name": "Hillslope groundwater discharges provide localized stream ecosystem buffers from regional per\u2010 and polyfluoroalkyl substances contamination" }, { "@id": "https://doi.org/10.1029/2019wr025971", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019wr025971" }, "name": "Formation Criteria for Hyporheic Anoxic Microzones: Assessing Interactions of Hydraulics, Nutrients, and Biofilms" }, { "@id": "https://doi.org/10.1029/2019jf005345", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jf005345" }, "name": "Seasonal Subsurface Thaw Dynamics of an Aufeis Feature Inferred From Geophysical Methods" }, { "@id": "https://doi.org/10.1002/hyp.13614", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13614" }, "name": "Quantitative guidance for efficient vertical flow measurements at the sediment\u2013water interface using temperature\u2013depth profiles" }, { "@id": "https://doi.org/10.3390/w11112312", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w11112312" }, "name": "Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge" }, { "@id": "https://doi.org/10.1029/2019jg005226", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jg005226" }, "name": "Heterogeneity in Hyporheic Flow, Pore Water Chemistry, and Microbial Community Composition in an Alpine Streambed" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2019.05.371", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2019.05.371" }, "name": "Return flows from beaver ponds enhance floodplain-to-river metals exchange in alluvial mountain catchments" }, { "@id": "https://doi.org/10.3390/w11081568", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w11081568" }, "name": "Evaluation of Stream and Wetland Restoration Using UAS-Based Thermal Infrared Mapping" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2019.03.022", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2019.03.022" }, "name": "Multi-scale preferential flow processes in an urban streambed under variable hydraulic conditions" }, { "@id": "https://doi.org/10.1029/2018jg004741", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018jg004741" }, "name": "Residence Time Controls on the Fate of Nitrogen in Flow\u2010Through Lakebed Sediments" }, { "@id": "https://doi.org/10.1002/hyp.13332", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13332" }, "name": "Efficient hydrogeological characterization of remote stream corridors using drones" }, { "@id": "https://doi.org/10.3133/sir20195062", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20195062" }, "name": "Evaluation of groundwater resources in the Spanish Valley Watershed, Grand and San Juan Counties, Utah" }, { "@id": "https://doi.org/10.5194/hess-22-6383-2018", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-22-6383-2018" }, "name": "Hydrogeochemical controls on brook trout spawning habitats in a coastal stream" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2018.04.344", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2018.04.344" }, "name": "Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals" }, { "@id": "https://doi.org/10.1002/hyp.13178", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13178" }, "name": "Explicit consideration of preferential groundwater discharges as surface water ecosystem control points" }, { "@id": "https://doi.org/10.1029/2018wr022823", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr022823" }, "name": "Direct Observations of Hydrologic Exchange Occurring With Less\u2010Mobile Porosity and the Development of Anoxic Microzones in Sandy Lakebed Sediments" }, { "@id": "https://doi.org/10.1029/2017wr022353", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2017wr022353" }, "name": "Rethinking the Use of Seabed Sediment Temperature Profiles to Trace Submarine Groundwater Flow" }, { "@id": "https://doi.org/10.5194/hess-2017-693-ac3", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-693-ac3" }, "name": "Initial author response to Review #3" }, { "@id": "https://doi.org/10.5194/hess-2017-693-ac1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-693-ac1" }, "name": "Initial Author Response to Reviewer #1" }, { "@id": "https://doi.org/10.5194/hess-2017-693-ac2", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-693-ac2" }, "name": "Initial Author Response to Reviewer #2" }, { "@id": "https://doi.org/10.5194/hess-2017-693-supplement", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-693-supplement" }, "name": "Supplementary material to "Working backwards from streambed thermal anomalies: hydrogeologic controls on preferential brook trout spawning habitat in a coastal stream"" }, { "@id": "https://doi.org/10.5194/hess-2017-693", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2017-693" }, "name": "Working backwards from streambed thermal anomalies: hydrogeologic controls on preferential brook trout spawning habitat in a coastal stream" }, { "@id": "https://doi.org/10.1002/hyp.11216", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020086043" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.11216" } ], "name": "Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications" }, { "@id": "https://doi.org/10.1111/gwat.12436", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84977578133" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gwat.12436" } ], "name": "Improved Vertical Streambed Flux Estimation Using Multiple Diurnal Temperature Methods in Series" }, { "@id": "https://doi.org/10.1002/2017gl073326", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017gl073326" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85019756738" } ], "name": "Pore network modeling of the electrical signature of solute transport in dual-domain media" }, { "@id": "https://doi.org/10.1002/2017gl075836", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017gl075836" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040084398" } ], "name": "Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach" }, { "@id": "https://doi.org/10.1002/ppp.1893", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ppp.1893" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84971476165" } ], "name": "Surface Geophysical Methods for Characterising Frozen Ground in Transitional Permafrost Landscapes" }, { "@id": "https://doi.org/10.1111/gwat.12459", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84990203620" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gwat.12459" } ], "name": "Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange" }, { "@id": "https://doi.org/10.5194/hess-2016-187", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2016-187" }, "name": "Influence of groundwater on distribution of dwarf wedgemussels (<i>Alasmidonta heterodon</i>) in the upper reaches of the Delaware River, northeastern USA" }, { "@id": "https://doi.org/10.1111/gwat.12369", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gwat.12369" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941710114" } ], "name": "1DTempPro V2: New Features for Inferring Groundwater/Surface-Water Exchange" }, { "@id": "https://doi.org/10.1002/2015wr018219", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978115007" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015wr018219" } ], "name": "Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling" }, { "@id": "https://doi.org/10.1002/2016wr018808", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84976598255" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016wr018808" } ], "name": "Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream" }, { "@id": "https://doi.org/10.5194/hess-20-4323-2016", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-20-4323-2016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84994052011" } ], "name": "Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA" }, { "@id": "https://doi.org/10.1016/j.limno.2017.02.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.limno.2017.02.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85015439427" } ], "name": "Shallow bedrock limits groundwater seepage-based headwater climate refugia" }, { "@id": "https://doi.org/10.1002/hyp.10722", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84960404651" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10722" } ], "name": "Thermal infrared video details multiscale groundwater discharge to surface water through macropores and peat pipes" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2015.09.059", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84943757432" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2015.09.059" } ], "name": "A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water" }, { "@id": "https://doi.org/10.1002/2015gl064200", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84934344077" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015gl064200" } ], "name": "A physical explanation for the development of redox microzones in hyporheic flow" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2015.10.054", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84947996456" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2015.10.054" } ], "name": "Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2" }, { "@id": "https://doi.org/10.1002/2014wr015880", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911058887" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014wr015880" } ], "name": "Dual-domain mass-transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments" }, { "@id": "https://doi.org/10.1002/2014gl059251", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014gl059251" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84895602983" } ], "name": "New permafrost is forming around shrinking Arctic lakes, but will it last?" }, { "@id": "https://doi.org/10.1007/s10533-014-9993-y", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10533-014-9993-y" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904822461" } ], "name": "Nitrate uptake dynamics of surface transient storage in stream channels and fluvial wetlands" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2014.09.030", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907963081" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2014.09.030" } ], "name": "Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling" }, { "@id": "https://doi.org/10.1002/hyp.9921", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.9921" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84900874615" } ], "name": "Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2012.12.046", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874313630" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2012.12.046" } ], "name": "Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations" }, { "@id": "https://doi.org/10.1899/12-110.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1899/12-110.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84884324151" } ], "name": "Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams" }, { "@id": "https://doi.org/10.1002/wrcr.20397", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883732423" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wrcr.20397" } ], "name": "Simultaneous estimation of local-scale and flow path-scale dual-domain mass transfer parameters using geoelectrical monitoring" }, { "@id": "https://doi.org/10.1021/es4018893", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84886879524" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es4018893" } ], "name": "Understanding water column and streambed thermal refugia for endangered mussels in the Delaware River" }, { "@id": "https://doi.org/10.1002/hyp.8200", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84859637672" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.8200" } ], "name": "A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams" }, { "@id": "https://doi.org/10.1016/j.jhydrol.2011.11.053", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2011.11.053" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856214379" } ], "name": "Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program" }, { "@id": "https://doi.org/10.1029/2011wr011227", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011wr011227" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84857879298" } ], "name": "Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux" }, { "@id": "https://doi.org/10.1029/2010wr009959", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr009959" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79957489904" } ], "name": "Residence time distributions in surface transient storage zones in streams: Estimation via signal deconvolution" }, { "@id": "https://doi.org/10.1029/2010wr009896", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr009896" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960693589" } ], "name": "Separation of river network-scale nitrogen removal among the main channel and two transient storage compartments" }, { "@id": "https://doi.org/10.1029/2008wr006959", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008wr006959" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79551717371" } ], "name": "A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage" }, { "@id": "https://doi.org/10.1029/2009wr008222", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954393099" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009wr008222" } ], "name": "Surface and hyporheic transient storage dynamics throughout a coastal stream network" } ] }, "@type": "Person", "affiliation": { "@type": "Organization", "alternateName": "Hydrogeophysics Branch", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2928" }, "name": "US Geological Survey " }, "alumniOf": [ { "@type": "Organization", "alternateName": "Hydrology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3557" }, "name": "Colorado School of Mines" }, { "@type": "Organization", "alternateName": "Geology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2029" }, "name": "Syracuse University" } ], "familyName": "Briggs", "givenName": "Martin", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "36162817300" }, "mainEntityOfPage": "https://orcid.org/0000-0003-3206-4132" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Martin A. Briggs", "display_name_alternatives": [ "M. Briggs", "Martin A. Briggs", "Martin Briggs", "Marty A. Briggs", "M. A. Briggs" ], "ids": { "openalex": "https://openalex.org/A5038327316", "orcid": "https://orcid.org/0000-0003-3206-4132", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=36162817300&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0003-3206-4132", "topics": [ { "count": 50, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 42, "display_name": "Groundwater Flow and Transport Modeling", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10894", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 28, "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11311", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 23, "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10398", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 20, "display_name": "Importance and Conservation of Freshwater Biodiversity", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10302", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 16, "display_name": "Geophysical Exploration and Monitoring Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10572", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 16, "display_name": "Ecological Dynamics of Riverine Landscapes", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10577", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 13, "display_name": "Global Flood Risk Assessment and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10930", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 10, "display_name": "Hydrological Modeling using Machine Learning Methods", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11490", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 6, "display_name": "Microbial Nitrogen Cycling in Wastewater Treatment Systems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10564", "subfield": { "display_name": "Pollution", "id": "https://openalex.org/subfields/2310" } }, { "count": 6, "display_name": "Water Quality and Hydrogeology Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12773", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 5, "display_name": "Mechanics and Transport in Unsaturated Soils", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10716", "subfield": { "display_name": "Civil and Structural Engineering", "id": "https://openalex.org/subfields/2205" } }, { "count": 5, "display_name": "Ecological Impact of Beaver Activities on Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T14039", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 5, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 5, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 5, "display_name": "Arctic Permafrost Dynamics and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11333", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 4, "display_name": "Ecological Impact of Freshwater Mussels", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12097", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 3, "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T11609", "subfield": { "display_name": "Ocean Engineering", "id": "https://openalex.org/subfields/2212" } }, { "count": 3, "display_name": "Nuclear Magnetic Resonance Applications in Various Fields", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Physics and Astronomy", "id": "https://openalex.org/fields/31" }, "id": "https://openalex.org/T12603", "subfield": { "display_name": "Nuclear and High Energy Physics", "id": "https://openalex.org/subfields/3106" } }, { "count": 3, "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12543", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 3, "display_name": "High-Resolution Seismic Noise Tomography", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11757", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 3, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 3, "display_name": "Characterization of Shale Gas Pore Structure", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10399", "subfield": { "display_name": "Mechanics of Materials", "id": "https://openalex.org/subfields/2211" } }, { "count": 3, "display_name": "Urban Stormwater Management and Sustainable Drainage Systems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11119", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 3, "display_name": "Arctic Sea Ice Variability and Decline", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11459", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } } ], "updated_date": "2024-05-22T00:45:26.115641" }
}