Item talk:Q336158
From geokb
{
"DOI": { "doi": "10.5066/p97cghzh", "prefix": "10.5066", "suffix": "p97cghzh", "identifiers": [], "alternateIdentifiers": [], "creators": [ { "name": "Rahmani, Farshid", "nameType": "Personal", "givenName": "Farshid", "familyName": "Rahmani", "affiliation": [], "nameIdentifiers": [] }, { "name": "Lawson, Kathryn", "nameType": "Personal", "givenName": "Kathryn", "familyName": "Lawson", "affiliation": [], "nameIdentifiers": [ { "schemeUri": "https://orcid.org", "nameIdentifier": "https://orcid.org/0000-0003-0075-7911", "nameIdentifierScheme": "ORCID" } ] }, { "name": "Ouyang, Wenyu", "nameType": "Personal", "givenName": "Wenyu", "familyName": "Ouyang", "affiliation": [], "nameIdentifiers": [] }, { "name": "Appling, Alison", "nameType": "Personal", "givenName": "Alison", "familyName": "Appling", "affiliation": [], "nameIdentifiers": [ { "schemeUri": "https://orcid.org", "nameIdentifier": "https://orcid.org/0000-0003-3638-8572", "nameIdentifierScheme": "ORCID" } ] }, { "name": "Oliver, Samantha", "nameType": "Personal", "givenName": "Samantha", "familyName": "Oliver", "affiliation": [], "nameIdentifiers": [ { "schemeUri": "https://orcid.org", "nameIdentifier": "https://orcid.org/0000-0001-5668-1165", "nameIdentifierScheme": "ORCID" } ] }, { "name": "Shen, Chaopeng", "nameType": "Personal", "givenName": "Chaopeng", "familyName": "Shen", "affiliation": [], "nameIdentifiers": [ { "schemeUri": "https://orcid.org", "nameIdentifier": "https://orcid.org/0000-0002-0685-1901", "nameIdentifierScheme": "ORCID" } ] } ], "titles": [ { "title": "Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data" } ], "publisher": "U.S. Geological Survey", "container": {}, "publicationYear": 2020, "subjects": [ { "subject": "Hydrology, Water Quality, Water Resources" } ], "contributors": [], "dates": [ { "date": "2020", "dateType": "Issued" } ], "language": null, "types": { "ris": "DATA", "bibtex": "misc", "citeproc": "dataset", "schemaOrg": "Dataset", "resourceType": "Dataset", "resourceTypeGeneral": "Dataset" }, "relatedIdentifiers": [ { "relationType": "IsCitedBy", "relatedIdentifier": "10.1088/1748-9326/abd501", "relatedIdentifierType": "DOI" } ], "relatedItems": [], "sizes": [], "formats": [], "version": null, "rightsList": [], "descriptions": [ { "description": "This data release provides all data and code used in Rahmani et al. (2020) to model stream temperature and assess results. Briefly, we used a subset of the USGS GAGES-II dataset as a test case for temperature prediction using deep learning methods. The associated manuscript explores the value of including stream discharge as a predictor in the temperature models, including the value of predicted discharge from a separate model when no discharge measurements are available. The data are organized into these items: Spatial Information - Locations of the 118 monitoring sites used in this study Observations - Water temperature observations for the 118 sites used in this study Model Inputs - Model inputs, including basin attributes, weather drivers, and discharge Models - Code and configurations for the stream temperature models Model Predictions - Predictions of stream water temperature Model Evaluation - Performance metrics for each stream temperature model This research was funded by the Integrated Water Prediction Program at the US Geological Survey.", "descriptionType": "Abstract" } ], "geoLocations": [], "fundingReferences": [], "xml": "PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPHJlc291cmNlIHhtbG5zPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCIgeG1sbnM6eHNpPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZSIgeHNpOnNjaGVtYUxvY2F0aW9uPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCBodHRwOi8vc2NoZW1hLmRhdGFjaXRlLm9yZy9tZXRhL2tlcm5lbC00LjEvbWV0YWRhdGEueHNkIj4KICA8aWRlbnRpZmllciBpZGVudGlmaWVyVHlwZT0iRE9JIj4xMC41MDY2L1A5N0NHSFpIPC9pZGVudGlmaWVyPgogIDxjcmVhdG9ycz4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5SYWhtYW5pLCBGYXJzaGlkPC9jcmVhdG9yTmFtZT4KICAgICAgPGFmZmlsaWF0aW9uIHhtbG5zOnhzPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeHNpOnR5cGU9InhzOnN0cmluZyIvPgogICAgPC9jcmVhdG9yPgogICAgPGNyZWF0b3I+CiAgICAgIDxjcmVhdG9yTmFtZSBuYW1lVHlwZT0iUGVyc29uYWwiPkxhd3NvbiwgS2F0aHJ5bjwvY3JlYXRvck5hbWU+CiAgICAgIDxuYW1lSWRlbnRpZmllciBuYW1lSWRlbnRpZmllclNjaGVtZT0iT1JDSUQiIHNjaGVtZVVSST0iaHR0cDovL29yY2lkLm9yZy8iPjAwMDAtMDAwMy0wMDc1LTc5MTE8L25hbWVJZGVudGlmaWVyPgogICAgICA8YWZmaWxpYXRpb24geG1sbnM6eHM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hIiB4c2k6dHlwZT0ieHM6c3RyaW5nIi8+CiAgICA8L2NyZWF0b3I+CiAgICA8Y3JlYXRvcj4KICAgICAgPGNyZWF0b3JOYW1lIG5hbWVUeXBlPSJQZXJzb25hbCI+T3V5YW5nLCBXZW55dTwvY3JlYXRvck5hbWU+CiAgICAgIDxhZmZpbGlhdGlvbiB4bWxuczp4cz0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEiIHhzaTp0eXBlPSJ4czpzdHJpbmciLz4KICAgIDwvY3JlYXRvcj4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5BcHBsaW5nLCBBbGlzb248L2NyZWF0b3JOYW1lPgogICAgICA8bmFtZUlkZW50aWZpZXIgbmFtZUlkZW50aWZpZXJTY2hlbWU9Ik9SQ0lEIiBzY2hlbWVVUkk9Imh0dHA6Ly9vcmNpZC5vcmcvIj4wMDAwLTAwMDMtMzYzOC04NTcyPC9uYW1lSWRlbnRpZmllcj4KICAgICAgPGFmZmlsaWF0aW9uIHhtbG5zOnhzPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeHNpOnR5cGU9InhzOnN0cmluZyIvPgogICAgPC9jcmVhdG9yPgogICAgPGNyZWF0b3I+CiAgICAgIDxjcmVhdG9yTmFtZSBuYW1lVHlwZT0iUGVyc29uYWwiPk9saXZlciwgU2FtYW50aGE8L2NyZWF0b3JOYW1lPgogICAgICA8bmFtZUlkZW50aWZpZXIgbmFtZUlkZW50aWZpZXJTY2hlbWU9Ik9SQ0lEIiBzY2hlbWVVUkk9Imh0dHA6Ly9vcmNpZC5vcmcvIj4wMDAwLTAwMDEtNTY2OC0xMTY1PC9uYW1lSWRlbnRpZmllcj4KICAgICAgPGFmZmlsaWF0aW9uIHhtbG5zOnhzPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeHNpOnR5cGU9InhzOnN0cmluZyIvPgogICAgPC9jcmVhdG9yPgogICAgPGNyZWF0b3I+CiAgICAgIDxjcmVhdG9yTmFtZSBuYW1lVHlwZT0iUGVyc29uYWwiPlNoZW4sIENoYW9wZW5nPC9jcmVhdG9yTmFtZT4KICAgICAgPG5hbWVJZGVudGlmaWVyIG5hbWVJZGVudGlmaWVyU2NoZW1lPSJPUkNJRCIgc2NoZW1lVVJJPSJodHRwOi8vb3JjaWQub3JnLyI+MDAwMC0wMDAyLTA2ODUtMTkwMTwvbmFtZUlkZW50aWZpZXI+CiAgICAgIDxhZmZpbGlhdGlvbiB4bWxuczp4cz0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEiIHhzaTp0eXBlPSJ4czpzdHJpbmciLz4KICAgIDwvY3JlYXRvcj4KICA8L2NyZWF0b3JzPgogIDx0aXRsZXM+CiAgICA8dGl0bGU+RXhwbG9yaW5nIHRoZSBleGNlcHRpb25hbCBwZXJmb3JtYW5jZSBvZiBhIGRlZXAgbGVhcm5pbmcgc3RyZWFtIHRlbXBlcmF0dXJlIG1vZGVsIGFuZCB0aGUgdmFsdWUgb2Ygc3RyZWFtZmxvdyBkYXRhPC90aXRsZT4KICA8L3RpdGxlcz4KICA8cHVibGlzaGVyPlUuUy4gR2VvbG9naWNhbCBTdXJ2ZXk8L3B1Ymxpc2hlcj4KICA8cHVibGljYXRpb25ZZWFyPjIwMjA8L3B1YmxpY2F0aW9uWWVhcj4KICA8cmVzb3VyY2VUeXBlIHJlc291cmNlVHlwZUdlbmVyYWw9IkRhdGFzZXQiPkRhdGFzZXQ8L3Jlc291cmNlVHlwZT4KICA8c3ViamVjdHM+CiAgICA8c3ViamVjdD5IeWRyb2xvZ3ksIFdhdGVyIFF1YWxpdHksIFdhdGVyIFJlc291cmNlczwvc3ViamVjdD4KICA8L3N1YmplY3RzPgogIDxkYXRlcy8+CiAgPGFsdGVybmF0ZUlkZW50aWZpZXJzLz4KICA8cmVsYXRlZElkZW50aWZpZXJzPgogICAgPHJlbGF0ZWRJZGVudGlmaWVyIHJlbGF0ZWRJZGVudGlmaWVyVHlwZT0iRE9JIiByZWxhdGlvblR5cGU9IklzQ2l0ZWRCeSI+aHR0cHM6Ly9kb2kub3JnLzEwLjEwODgvMTc0OC05MzI2L2FiZDUwMTwvcmVsYXRlZElkZW50aWZpZXI+CiAgPC9yZWxhdGVkSWRlbnRpZmllcnM+CiAgPGZvcm1hdHMvPgogIDxkZXNjcmlwdGlvbnM+CiAgICA8ZGVzY3JpcHRpb24gZGVzY3JpcHRpb25UeXBlPSJBYnN0cmFjdCI+VGhpcyBkYXRhIHJlbGVhc2UgcHJvdmlkZXMgYWxsIGRhdGEgYW5kIGNvZGUgdXNlZCBpbiBSYWhtYW5pIGV0IGFsLiAoMjAyMCkgdG8gbW9kZWwgc3RyZWFtIHRlbXBlcmF0dXJlIGFuZCBhc3Nlc3MgcmVzdWx0cy4gQnJpZWZseSwgd2UgdXNlZCBhIHN1YnNldCBvZiB0aGUgVVNHUyBHQUdFUy1JSSBkYXRhc2V0IGFzIGEgdGVzdCBjYXNlIGZvciB0ZW1wZXJhdHVyZSBwcmVkaWN0aW9uIHVzaW5nIGRlZXAgbGVhcm5pbmcgbWV0aG9kcy4gVGhlIGFzc29jaWF0ZWQgbWFudXNjcmlwdCBleHBsb3JlcyB0aGUgdmFsdWUgb2YgaW5jbHVkaW5nIHN0cmVhbSBkaXNjaGFyZ2UgYXMgYSBwcmVkaWN0b3IgaW4gdGhlIHRlbXBlcmF0dXJlIG1vZGVscywgaW5jbHVkaW5nIHRoZSB2YWx1ZSBvZiBwcmVkaWN0ZWQgZGlzY2hhcmdlIGZyb20gYSBzZXBhcmF0ZSBtb2RlbCB3aGVuIG5vIGRpc2NoYXJnZSBtZWFzdXJlbWVudHMgYXJlIGF2YWlsYWJsZS4gVGhlIGRhdGEgYXJlIG9yZ2FuaXplZCBpbnRvIHRoZXNlIGl0ZW1zOiAgU3BhdGlhbCBJbmZvcm1hdGlvbiAtIExvY2F0aW9ucyBvZiB0aGUgMTE4IG1vbml0b3Jpbmcgc2l0ZXMgdXNlZCBpbiB0aGlzIHN0dWR5IE9ic2VydmF0aW9ucyAtIFdhdGVyIHRlbXBlcmF0dXJlIG9ic2VydmF0aW9ucyBmb3IgdGhlIDExOCBzaXRlcyB1c2VkIGluIHRoaXMgc3R1ZHkgTW9kZWwgSW5wdXRzIC0gTW9kZWwgaW5wdXRzLCBpbmNsdWRpbmcgYmFzaW4gYXR0cmlidXRlcywgd2VhdGhlciBkcml2ZXJzLCBhbmQgZGlzY2hhcmdlIE1vZGVscyAtIENvZGUgYW5kIGNvbmZpZ3VyYXRpb25zIGZvciB0aGUgc3RyZWFtIHRlbXBlcmF0dXJlIG1vZGVscyBNb2RlbCBQcmVkaWN0aW9ucyAtIFByZWRpY3Rpb25zIG9mIHN0cmVhbSB3YXRlciB0ZW1wZXJhdHVyZSBNb2RlbCBFdmFsdWF0aW9uIC0gUGVyZm9ybWFuY2UgbWV0cmljcyBmb3IgZWFjaCBzdHJlYW0gdGVtcGVyYXR1cmUgbW9kZWwgIFRoaXMgcmVzZWFyY2ggd2FzIGZ1bmRlZCBieSB0aGUgSW50ZWdyYXRlZCBXYXRlciBQcmVkaWN0aW9uIFByb2dyYW0gYXQgdGhlIFVTIEdlb2xvZ2ljYWwgU3VydmV5LjwvZGVzY3JpcHRpb24+CiAgPC9kZXNjcmlwdGlvbnM+CjwvcmVzb3VyY2U+", "url": "https://www.sciencebase.gov/catalog/item/5f908bae82ce720ee2d0fef2", "contentUrl": null, "metadataVersion": 1, "schemaVersion": "http://datacite.org/schema/kernel-4", "source": "mds", "isActive": true, "state": "findable", "reason": null, "viewCount": 0, "viewsOverTime": [], "downloadCount": 0, "downloadsOverTime": [], "referenceCount": 1, "citationCount": 0, "citationsOverTime": [], "partCount": 0, "partOfCount": 0, "versionCount": 0, "versionOfCount": 0, "created": "2020-12-09T19:22:34.000Z", "registered": "2020-12-09T19:22:35.000Z", "published": "2020", "updated": "2021-01-04T22:16:03.000Z" }
}