Item talk:Q326832

From geokb

{

 "DOI": {
   "doi": "10.5066/p9h2ndwu",
   "identifiers": [],
   "creators": [
     {
       "name": "Roland, Victor L",
       "nameType": "Personal",
       "givenName": "Victor L",
       "familyName": "Roland",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-6260-9351",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Garcia, Ana Maria",
       "nameType": "Personal",
       "givenName": "Ana Maria",
       "familyName": "Garcia",
       "affiliation": [],
       "nameIdentifiers": []
     },
     {
       "name": "Saad, David A",
       "nameType": "Personal",
       "givenName": "David A",
       "familyName": "Saad",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0001-6559-6181",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Ator, Scott W",
       "nameType": "Personal",
       "givenName": "Scott W",
       "familyName": "Ator",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-9186-4837",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Robertson, Dale M",
       "nameType": "Personal",
       "givenName": "Dale M",
       "familyName": "Robertson",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0001-6799-0596",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Schwarz, Gregory E",
       "nameType": "Personal",
       "givenName": "Gregory E",
       "familyName": "Schwarz",
       "affiliation": [
         "United States Geological Survey"
       ],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-9239-4566",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     }
   ],
   "titles": [
     {
       "title": "Nutrient Load Data used to Quantify Regional Effects of Agricultural Best Management Practices: An application of the 2012 SPARROW models for the Midwest, Northeast, and Southeast United States"
     }
   ],
   "publisher": "U.S. Geological Survey",
   "container": {},
   "publicationYear": 2021,
   "subjects": [
     {
       "subject": "Water Quality"
     }
   ],
   "contributors": [],
   "dates": [
     {
       "date": "2021",
       "dateType": "Issued"
     }
   ],
   "language": null,
   "types": {
     "ris": "DATA",
     "bibtex": "misc",
     "citeproc": "dataset",
     "schemaOrg": "Dataset",
     "resourceType": "Dataset",
     "resourceTypeGeneral": "Dataset"
   },
   "relatedIdentifiers": [
     {
       "relationType": "IsCitedBy",
       "relatedIdentifier": "10.2489/jswc.2022.00162",
       "relatedIdentifierType": "DOI"
     }
   ],
   "relatedItems": [],
   "sizes": [],
   "formats": [],
   "version": null,
   "rightsList": [],
   "descriptions": [
     {
       "description": "Nitrogen and phosphorus losses from agricultural areas have impacted the water quality of downstream rivers, lakes, and oceans. As a result, investment in the adoption of agricultural best management practices (BMPs) has grown but assessments of their effectiveness at large spatial scales have been sparse. This study applies regional Spatially Referenced Regression On Watershed-attributes (SPARROW) models developed for the Midwest, Northeast, and Southeast regions of the United States to quantify regional effects of BMPs on nutrient losses from agricultural lands. These models were used because they account for specific BMPs in the prediction of instream nutrient loads. This data release accompanies the journal article \"Quantifying regional effects of best management practices on nutrient losses from agricultural lands\" Roland and others (2022, https://doi.org/10.2489/jswc.2022.00162), and it contains the input and output data for the modeling scenarios that were evaluated relative to the 2012 regional SPARROW models.",
       "descriptionType": "Abstract"
     }
   ],
   "geoLocations": [],
   "fundingReferences": [],
   "url": "https://www.sciencebase.gov/catalog/item/6059112dd34e1894882f7adc",
   "contentUrl": null,
   "metadataVersion": 1,
   "schemaVersion": "http://datacite.org/schema/kernel-4",
   "source": "mds",
   "isActive": true,
   "state": "findable",
   "reason": null,
   "viewCount": 0,
   "downloadCount": 0,
   "referenceCount": 1,
   "citationCount": 0,
   "partCount": 0,
   "partOfCount": 0,
   "versionCount": 0,
   "versionOfCount": 0,
   "created": "2021-10-04T20:30:02Z",
   "registered": "2021-10-04T20:30:04Z",
   "published": null,
   "updated": "2022-02-06T05:14:25Z"
 }

}