Item talk:Q320104
From geokb
{
"DOI": { "doi": "10.5066/p9yqmnhf", "prefix": "10.5066", "suffix": "p9yqmnhf", "identifiers": [], "alternateIdentifiers": [], "creators": [ { "name": "Sohl, Terry L", "nameType": "Personal", "givenName": "Terry L", "familyName": "Sohl", "affiliation": [], "nameIdentifiers": [ { "schemeUri": "https://orcid.org", "nameIdentifier": "https://orcid.org/0000-0002-9771-4231", "nameIdentifierScheme": "ORCID" } ] }, { "name": "Dornbierer, Jordan (Contractor) M", "nameType": "Personal", "affiliation": [], "nameIdentifiers": [] }, { "name": "Wika, Steve (Contractor)", "nameType": "Personal", "affiliation": [], "nameIdentifiers": [] } ], "titles": [ { "title": "33 high-resolution scenarios of land use and vegetation change in the Prairie Potholes of the United States" } ], "publisher": "U.S. Geological Survey", "container": {}, "publicationYear": 2018, "subjects": [], "contributors": [], "dates": [ { "date": "2014/2100", "dateType": "Collected" }, { "date": "2018", "dateType": "Issued" } ], "language": null, "types": { "ris": "DATA", "bibtex": "misc", "citeproc": "dataset", "schemaOrg": "Dataset", "resourceType": "Dataset", "resourceTypeGeneral": "Dataset" }, "relatedIdentifiers": [ { "relationType": "IsCitedBy", "relatedIdentifier": "10.1016/j.ecoinf.2023.102003", "relatedIdentifierType": "DOI" } ], "relatedItems": [], "sizes": [], "formats": [], "version": null, "rightsList": [], "descriptions": [ { "description": "A new version of USGS's FORE-SCE model was used to produce unprecedented landscape projections for four ecoregions in the Prairie Potholes region of Great Plains. The scenarios are consistent with the same scenarios modeled for the Great Plains Landscape Conservation Cooperative region. The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (29 land use and land cover classes), 3) broad spatial extent (covering approximately 350,000 square kilometers), 4) use of real land ownership boundaries to ensure realistic representation of landscape patterns, and 5) representation of both anthropogenic land use and natural vegetation change. A variety of scenarios were modeled from 2014 to 2100, with decadal timesteps (i.e., 2014, 2020, 2030, etc.). Modeled land use and natural vegetation classes were responsive to projected future changes in environmental conditions, including changes in groundwater and water access. Eleven primary land-use scenarios were modeled, from four different scenario families. The land-use scenarios focused on socioeconomic impacts on anthropogenic land use (demographics, energy use, agricultural economics, and other socioeconomic considerations). The following provides a brief summary of the 11 major land-use scenarios. 1) Business-as-usual - Based on an extrapolation of recent land-cover trends as derived from remote-sensing data. Overall trends were provided by 2001 to 2011 change in the National Land Cover Database, while change in crop types were extrapolated from 2008 to 2014 change in the Cropland Data Layer. Overall the scenario is marked by expansion of high-value traditional crops (corn, soybeans, cotton), with a concurrent decline in dryland wheat and some other lower-value crops. 2) Billion Ton Update scenario ($40 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update (BTU). The $40 scenario represents likely agricultural conditions under an assumed farmgate price of $40 per dry ton of biomass (for the production of biofuel). This is the least aggressive BTU scenario for placing \"perennial grass\" (for biofuel feedstock) on the landscape. 3) Billion Ton Update scenario ($60 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update. The $60 scenario represents likely agricultural conditions under an assumed farmgate price of $60 per dry ton of biomass (for the production of biofuel). At the higher farmgate price, the perennial grass class expands dramatically. 4) Billion Ton Update scenario ($80 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update. The $80 scenario represents likely agricultural conditions under an assumed farmgate price of $80 per dry ton of biomass (for the production of biofuel). With the high farmgate price, this scenario shows the highest expansion of perennial grass among the 11 modeled scenarios. 5) GCAM Reference scenario - Based on global-scale scenarios from the GCAM model, the \"reference\" scenario provides a likely landscape under a world without specific carbon or climate mitigation efforts. As such, it's another form of a \"business-as-usual\" scenario. 6) GCAM 4.5 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 4.5 model represents a mid-level mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of ~4.5 W/m2 by 2100. Agriculture becomes even more concentrated in the Great Plains and Midwestern US, resulting in substantial increases in cropland (including perennial grass used as feedstock for cellulosic biofuel production). 7) GCAM 2.6 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 2.6 model represents a very aggressive mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of only ~2.6 W/m2 by 2100. Agriculture becomes even more concentrated in the Great Plains and Midwestern US, resulting in substantial increases in cropland (including perennial grass used as feedstock for cellulosic biofuel production). 8) SRES A1B scenario - A scenario consistent with the Intergovernmental Panel on Climate Change (IPCC's) Special Report on Emissions Scenarios (SRES) A1B storyline. In the A1B scenario, economic activity is prioritized over environmental conservation. Agriculture expands substantially, including use of perennial grasses for biofuel production. 9) SRES A2 scenario - A scenario consistent with the IPCC's SRES A2 storyline. In the A2 scenario, global population levels reach 15 billion by 2100. Economic activity is prioritized over environmental conservation. This scenario has the highest overall expansion of traditional cropland, given the very high demand for foodstuffs and other agricultural commodities. 10) SRES B1 scenario - A scenario consistent with the IPCC's SRES B1 storyline. In the B1 scenario, environmental conservation is valued, as is regional cooperation. Much less agricultural expansion occurs as compared to the A1B or A2 scenarios. 11) SRES B2 scenario - A scenario consistent with the IPCC's SRES B2 storyline. In the B2 scenario, environmental conservation is highly valued. Of the eleven modeled scenarios, the B2 scenarios has the smallest overall agricultural footprint (traditional cropland, hay/pasture, perennial grasses). For each of the eleven land-use scenarios, three alternative climate / vegetation scenarios were modeled, resulting in 33 unique scenario combinations. The alternative vegetation scenarios represent the potential changes in quantity and distribution of the major vegetation classes that were modeled (grassland, shrubland, deciduous forest, mixed forest, and evergreen forest), as a response to potential future climate conditions. The three alternative vegetation scenarios correspond to climate conditions consistent with 1) The Intergovernmental Panel on Climate Change (IPCC's) Representative Concentration Pathway (RCP) 8.5 scenario (a scenario of high climate change), 2) the RCP 4.5 scenario (a mid-level climate change scenario), and 3) a mid-point climate that averages RCP4.5 and RCP8.5 conditions Data are provided here for each of the 33 possible scenario combinations. Each scenario file is provided as a zip file containing 1) starting 2014 land cover for the region, and 2) decadal timesteps of modeled land-cover from 2020 through 2100. The \"attributes\" section of the metadata provides a key for identifying file names associated with each of the 33 scenario combinations. Scenarios witht the same spatial, thematic, and temporal characteristics as these have been created for an adjacent part of the southern and central Great Plains. These scenarios, covering the Great Plains Landscape Conservation Cooperative area, may be found at: https://www.sciencebase.gov/catalog/item/59fc7d9be4b0531197b2ea75.", "descriptionType": "Abstract" } ], "geoLocations": [], "fundingReferences": [], "xml": "PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPHJlc291cmNlIHhtbG5zPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCIgeG1sbnM6eHNpPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZSIgeHNpOnNjaGVtYUxvY2F0aW9uPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCBodHRwOi8vc2NoZW1hLmRhdGFjaXRlLm9yZy9tZXRhL2tlcm5lbC00LjEvbWV0YWRhdGEueHNkIj4KICA8aWRlbnRpZmllciBpZGVudGlmaWVyVHlwZT0iRE9JIj4xMC41MDY2L1A5WVFNTkhGPC9pZGVudGlmaWVyPgogIDxjcmVhdG9ycz4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5Tb2hsLCBUZXJyeSBMPC9jcmVhdG9yTmFtZT4KICAgICAgPG5hbWVJZGVudGlmaWVyIG5hbWVJZGVudGlmaWVyU2NoZW1lPSJPUkNJRCIgc2NoZW1lVVJJPSJodHRwOi8vb3JjaWQub3JnLyI+MDAwMC0wMDAyLTk3NzEtNDIzMTwvbmFtZUlkZW50aWZpZXI+CiAgICAgIDxhZmZpbGlhdGlvbiB4bWxuczp4cz0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEiIHhzaTp0eXBlPSJ4czpzdHJpbmciLz4KICAgIDwvY3JlYXRvcj4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5Eb3JuYmllcmVyLCBKb3JkYW4gKENvbnRyYWN0b3IpIE08L2NyZWF0b3JOYW1lPgogICAgICA8YWZmaWxpYXRpb24geG1sbnM6eHM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hIiB4c2k6dHlwZT0ieHM6c3RyaW5nIi8+CiAgICA8L2NyZWF0b3I+CiAgICA8Y3JlYXRvcj4KICAgICAgPGNyZWF0b3JOYW1lIG5hbWVUeXBlPSJQZXJzb25hbCI+V2lrYSwgU3RldmUgKENvbnRyYWN0b3IpPC9jcmVhdG9yTmFtZT4KICAgICAgPGFmZmlsaWF0aW9uIHhtbG5zOnhzPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeHNpOnR5cGU9InhzOnN0cmluZyIvPgogICAgPC9jcmVhdG9yPgogIDwvY3JlYXRvcnM+CiAgPHRpdGxlcz4KICAgIDx0aXRsZT4zMyBoaWdoLXJlc29sdXRpb24gc2NlbmFyaW9zIG9mIGxhbmQgdXNlIGFuZCB2ZWdldGF0aW9uIGNoYW5nZSBpbiB0aGUgUHJhaXJpZSBQb3Rob2xlcyBvZiB0aGUgVW5pdGVkIFN0YXRlczwvdGl0bGU+CiAgPC90aXRsZXM+CiAgPHB1Ymxpc2hlcj5VLlMuIEdlb2xvZ2ljYWwgU3VydmV5PC9wdWJsaXNoZXI+CiAgPHB1YmxpY2F0aW9uWWVhcj4yMDE4PC9wdWJsaWNhdGlvblllYXI+CiAgPHJlc291cmNlVHlwZSByZXNvdXJjZVR5cGVHZW5lcmFsPSJEYXRhc2V0Ij5EYXRhc2V0PC9yZXNvdXJjZVR5cGU+CiAgPGRhdGVzPgogICAgPGRhdGUgZGF0ZVR5cGU9IkNvbGxlY3RlZCI+MjAxNC8yMTAwPC9kYXRlPgogIDwvZGF0ZXM+CiAgPGFsdGVybmF0ZUlkZW50aWZpZXJzLz4KICA8cmVsYXRlZElkZW50aWZpZXJzPgogICAgPHJlbGF0ZWRJZGVudGlmaWVyIHJlbGF0ZWRJZGVudGlmaWVyVHlwZT0iRE9JIiByZWxhdGlvblR5cGU9IklzQ2l0ZWRCeSI+aHR0cHM6Ly9kb2kub3JnLzEwLjEwMTYvSi5FQ09JTkYuMjAyMy4xMDIwMDM8L3JlbGF0ZWRJZGVudGlmaWVyPgogIDwvcmVsYXRlZElkZW50aWZpZXJzPgogIDxmb3JtYXRzLz4KICA8ZGVzY3JpcHRpb25zPgogICAgPGRlc2NyaXB0aW9uIGRlc2NyaXB0aW9uVHlwZT0iQWJzdHJhY3QiPkEgbmV3IHZlcnNpb24gb2YgVVNHUydzIEZPUkUtU0NFIG1vZGVsIHdhcyB1c2VkIHRvIHByb2R1Y2UgdW5wcmVjZWRlbnRlZCBsYW5kc2NhcGUgcHJvamVjdGlvbnMgZm9yIGZvdXIgZWNvcmVnaW9ucyBpbiB0aGUgUHJhaXJpZSBQb3Rob2xlcyByZWdpb24gb2YgR3JlYXQgUGxhaW5zLiAgVGhlIHNjZW5hcmlvcyBhcmUgY29uc2lzdGVudCB3aXRoIHRoZSBzYW1lIHNjZW5hcmlvcyBtb2RlbGVkIGZvciB0aGUgR3JlYXQgUGxhaW5zIExhbmRzY2FwZSBDb25zZXJ2YXRpb24gQ29vcGVyYXRpdmUgcmVnaW9uLiBUaGUgcHJvamVjdGlvbnMgYXJlIGNoYXJhY3Rlcml6ZWQgYnkgMSkgaGlnaCBzcGF0aWFsIHJlc29sdXRpb24gKDMwLW1ldGVyIGNlbGxzKSwgMikgaGlnaCB0aGVtYXRpYyByZXNvbHV0aW9uICgyOSBsYW5kIHVzZSBhbmQgbGFuZCBjb3ZlciBjbGFzc2VzKSwgMykgYnJvYWQgc3BhdGlhbCBleHRlbnQgKGNvdmVyaW5nIGFwcHJveGltYXRlbHkgMzUwLDAwMCBzcXVhcmUga2lsb21ldGVycyksIDQpIHVzZSBvZiByZWFsIGxhbmQgb3duZXJzaGlwIGJvdW5kYXJpZXMgdG8gZW5zdXJlIHJlYWxpc3RpYyByZXByZXNlbnRhdGlvbiBvZiBsYW5kc2NhcGUgcGF0dGVybnMsIGFuZCA1KSByZXByZXNlbnRhdGlvbiBvZiBib3RoIGFudGhyb3BvZ2VuaWMgbGFuZCB1c2UgYW5kIG5hdHVyYWwgdmVnZXRhdGlvbiBjaGFuZ2UuIEEgdmFyaWV0eSBvZiBzY2VuYXJpb3Mgd2VyZSBtb2RlbGVkIGZyb20gMjAxNCB0byAyMTAwLCB3aXRoIGRlY2FkYWwgdGltZXN0ZXBzIChpLmUuLCAyMDE0LCAyMDIwLCAyMDMwLCBldGMuKS4gTW9kZWxlZCBsYW5kIHVzZSBhbmQgbmF0dXJhbCB2ZWdldGF0aW9uIGNsYXNzZXMgd2VyZSByZXNwb25zaXZlIHRvIHByb2plY3RlZCBmdXR1cmUgY2hhbmdlcyBpbiBlbnZpcm9ubWVudGFsIGNvbmRpdGlvbnMsIGluY2x1ZGluZyBjaGFuZ2VzIGluIGdyb3VuZHdhdGVyIGFuZCB3YXRlciBhY2Nlc3MuICBFbGV2ZW4gcHJpbWFyeSBsYW5kLXVzZSBzY2VuYXJpb3Mgd2VyZSBtb2RlbGVkLCBmcm9tIGZvdXIgZGlmZmVyZW50IHNjZW5hcmlvIGZhbWlsaWVzLiBUaGUgbGFuZC11c2Ugc2NlbmFyaW9zIGZvY3VzZWQgb24gc29jaW9lY29ub21pYyBpbXBhY3RzIG9uIGFudGhyb3BvZ2VuaWMgbGFuZCB1c2UgKGRlbW9ncmFwaGljcywgZW5lcmd5IHVzZSwgYWdyaWN1bHR1cmFsIGVjb25vbWljcywgYW5kIG90aGVyIHNvY2lvZWNvbm9taWMgY29uc2lkZXJhdGlvbnMpLiBUaGUgZm9sbG93aW5nIHByb3ZpZGVzIGEgYnJpZWYgc3VtbWFyeSBvZiB0aGUgMTEgbWFqb3IgbGFuZC11c2Ugc2NlbmFyaW9zLiAxKSBCdXNpbmVzcy1hcy11c3VhbCAtIEJhc2VkIG9uIGFuIGV4dHJhcG9sYXRpb24gb2YgcmVjZW50IGxhbmQtY292ZXIgdHJlbmRzIGFzIGRlcml2ZWQgZnJvbSByZW1vdGUtc2Vuc2luZyBkYXRhLiBPdmVyYWxsIHRyZW5kcyB3ZXJlIHByb3ZpZGVkIGJ5IDIwMDEgdG8gMjAxMSBjaGFuZ2UgaW4gdGhlIE5hdGlvbmFsIExhbmQgQ292ZXIgRGF0YWJhc2UsIHdoaWxlIGNoYW5nZSBpbiBjcm9wIHR5cGVzIHdlcmUgZXh0cmFwb2xhdGVkIGZyb20gMjAwOCB0byAyMDE0IGNoYW5nZSBpbiB0aGUgQ3JvcGxhbmQgRGF0YSBMYXllci4gT3ZlcmFsbCB0aGUgc2NlbmFyaW8gaXMgbWFya2VkIGJ5IGV4cGFuc2lvbiBvZiBoaWdoLXZhbHVlIHRyYWRpdGlvbmFsIGNyb3BzIChjb3JuLCBzb3liZWFucywgY290dG9uKSwgd2l0aCBhIGNvbmN1cnJlbnQgZGVjbGluZSBpbiBkcnlsYW5kIHdoZWF0IGFuZCBzb21lIG90aGVyIGxvd2VyLXZhbHVlIGNyb3BzLiAyKSBCaWxsaW9uIFRvbiBVcGRhdGUgc2NlbmFyaW8gKCQ0MCBmYXJtZ2F0ZSBwcmljZSkgLSBUaGlzIHNjZW5hcmlvIGlzIGJhc2VkIG9uIFVTIERlcGFydG1lbnQgb2YgRW5lcmd5IGJpb2Z1ZWwgc2NlbmFyaW9zIGZyb20gdGhlIEJpbGxpb24gVG9uIFVwZGF0ZSAoQlRVKS4gVGhlICQ0MCBzY2VuYXJpbyByZXByZXNlbnRzIGxpa2VseSBhZ3JpY3VsdHVyYWwgY29uZGl0aW9ucyB1bmRlciBhbiBhc3N1bWVkIGZhcm1nYXRlIHByaWNlIG9mICQ0MCBwZXIgZHJ5IHRvbiBvZiBiaW9tYXNzIChmb3IgdGhlIHByb2R1Y3Rpb24gb2YgYmlvZnVlbCkuIFRoaXMgaXMgdGhlIGxlYXN0IGFnZ3Jlc3NpdmUgQlRVIHNjZW5hcmlvIGZvciBwbGFjaW5nICJwZXJlbm5pYWwgZ3Jhc3MiIChmb3IgYmlvZnVlbCBmZWVkc3RvY2spIG9uIHRoZSBsYW5kc2NhcGUuIDMpIEJpbGxpb24gVG9uIFVwZGF0ZSBzY2VuYXJpbyAoJDYwIGZhcm1nYXRlIHByaWNlKSAtIFRoaXMgc2NlbmFyaW8gaXMgYmFzZWQgb24gVVMgRGVwYXJ0bWVudCBvZiBFbmVyZ3kgYmlvZnVlbCBzY2VuYXJpb3MgZnJvbSB0aGUgQmlsbGlvbiBUb24gVXBkYXRlLiBUaGUgJDYwIHNjZW5hcmlvIHJlcHJlc2VudHMgbGlrZWx5IGFncmljdWx0dXJhbCBjb25kaXRpb25zIHVuZGVyIGFuIGFzc3VtZWQgZmFybWdhdGUgcHJpY2Ugb2YgJDYwIHBlciBkcnkgdG9uIG9mIGJpb21hc3MgKGZvciB0aGUgcHJvZHVjdGlvbiBvZiBiaW9mdWVsKS4gQXQgdGhlIGhpZ2hlciBmYXJtZ2F0ZSBwcmljZSwgdGhlIHBlcmVubmlhbCBncmFzcyBjbGFzcyBleHBhbmRzIGRyYW1hdGljYWxseS4gNCkgQmlsbGlvbiBUb24gVXBkYXRlIHNjZW5hcmlvICgkODAgZmFybWdhdGUgcHJpY2UpIC0gVGhpcyBzY2VuYXJpbyBpcyBiYXNlZCBvbiBVUyBEZXBhcnRtZW50IG9mIEVuZXJneSBiaW9mdWVsIHNjZW5hcmlvcyBmcm9tIHRoZSBCaWxsaW9uIFRvbiBVcGRhdGUuIFRoZSAkODAgc2NlbmFyaW8gcmVwcmVzZW50cyBsaWtlbHkgYWdyaWN1bHR1cmFsIGNvbmRpdGlvbnMgdW5kZXIgYW4gYXNzdW1lZCBmYXJtZ2F0ZSBwcmljZSBvZiAkODAgcGVyIGRyeSB0b24gb2YgYmlvbWFzcyAoZm9yIHRoZSBwcm9kdWN0aW9uIG9mIGJpb2Z1ZWwpLiBXaXRoIHRoZSBoaWdoIGZhcm1nYXRlIHByaWNlLCB0aGlzIHNjZW5hcmlvIHNob3dzIHRoZSBoaWdoZXN0IGV4cGFuc2lvbiBvZiBwZXJlbm5pYWwgZ3Jhc3MgYW1vbmcgdGhlIDExIG1vZGVsZWQgc2NlbmFyaW9zLiA1KSBHQ0FNIFJlZmVyZW5jZSBzY2VuYXJpbyAtIEJhc2VkIG9uIGdsb2JhbC1zY2FsZSBzY2VuYXJpb3MgZnJvbSB0aGUgR0NBTSBtb2RlbCwgdGhlICJyZWZlcmVuY2UiIHNjZW5hcmlvIHByb3ZpZGVzIGEgbGlrZWx5IGxhbmRzY2FwZSB1bmRlciBhIHdvcmxkIHdpdGhvdXQgc3BlY2lmaWMgY2FyYm9uIG9yIGNsaW1hdGUgbWl0aWdhdGlvbiBlZmZvcnRzLiBBcyBzdWNoLCBpdCdzIGFub3RoZXIgZm9ybSBvZiBhICJidXNpbmVzcy1hcy11c3VhbCIgc2NlbmFyaW8uIDYpIEdDQU0gNC41IHNjZW5hcmlvIC0gQmFzZWQgb24gZ2xvYmFsLXNjYWxlIHNjZW5hcmlvcyBmcm9tIHRoZSBHQ0FNIG1vZGVsLCB0aGUgR0NBTSA0LjUgbW9kZWwgcmVwcmVzZW50cyBhIG1pZC1sZXZlbCBtaXRpZ2F0aW9uIHNjZW5hcmlvLCB3aGVyZSBjYXJib24gcGF5bWVudHMgYW5kIG90aGVyIG1pdGlnYXRpb24gZWZmb3J0cyByZXN1bHQgaW4gYSBuZXQgcmFkaWF0aXZlIGZvcmNpbmcgb2YgfjQuNSBXL20yIGJ5IDIxMDAuIEFncmljdWx0dXJlIGJlY29tZXMgZXZlbiBtb3JlIGNvbmNlbnRyYXRlZCBpbiB0aGUgR3JlYXQgUGxhaW5zIGFuZCBNaWR3ZXN0ZXJuIFVTLCByZXN1bHRpbmcgaW4gc3Vic3RhbnRpYWwgaW5jcmVhc2VzIGluIGNyb3BsYW5kIChpbmNsdWRpbmcgcGVyZW5uaWFsIGdyYXNzIHVzZWQgYXMgZmVlZHN0b2NrIGZvciBjZWxsdWxvc2ljIGJpb2Z1ZWwgcHJvZHVjdGlvbikuIDcpIEdDQU0gMi42IHNjZW5hcmlvIC0gQmFzZWQgb24gZ2xvYmFsLXNjYWxlIHNjZW5hcmlvcyBmcm9tIHRoZSBHQ0FNIG1vZGVsLCB0aGUgR0NBTSAyLjYgbW9kZWwgcmVwcmVzZW50cyBhIHZlcnkgYWdncmVzc2l2ZSBtaXRpZ2F0aW9uIHNjZW5hcmlvLCB3aGVyZSBjYXJib24gcGF5bWVudHMgYW5kIG90aGVyIG1pdGlnYXRpb24gZWZmb3J0cyByZXN1bHQgaW4gYSBuZXQgcmFkaWF0aXZlIGZvcmNpbmcgb2Ygb25seSB+Mi42IFcvbTIgYnkgMjEwMC4gQWdyaWN1bHR1cmUgYmVjb21lcyBldmVuIG1vcmUgY29uY2VudHJhdGVkIGluIHRoZSBHcmVhdCBQbGFpbnMgYW5kIE1pZHdlc3Rlcm4gVVMsIHJlc3VsdGluZyBpbiBzdWJzdGFudGlhbCBpbmNyZWFzZXMgaW4gY3JvcGxhbmQgKGluY2x1ZGluZyBwZXJlbm5pYWwgZ3Jhc3MgdXNlZCBhcyBmZWVkc3RvY2sgZm9yIGNlbGx1bG9zaWMgYmlvZnVlbCBwcm9kdWN0aW9uKS4gOCkgU1JFUyBBMUIgc2NlbmFyaW8gLSBBIHNjZW5hcmlvIGNvbnNpc3RlbnQgd2l0aCB0aGUgSW50ZXJnb3Zlcm5tZW50YWwgUGFuZWwgb24gQ2xpbWF0ZSBDaGFuZ2UgKElQQ0MncykgU3BlY2lhbCBSZXBvcnQgb24gRW1pc3Npb25zIFNjZW5hcmlvcyAoU1JFUykgQTFCIHN0b3J5bGluZS4gSW4gdGhlIEExQiBzY2VuYXJpbywgZWNvbm9taWMgYWN0aXZpdHkgaXMgcHJpb3JpdGl6ZWQgb3ZlciBlbnZpcm9ubWVudGFsIGNvbnNlcnZhdGlvbi4gQWdyaWN1bHR1cmUgZXhwYW5kcyBzdWJzdGFudGlhbGx5LCBpbmNsdWRpbmcgdXNlIG9mIHBlcmVubmlhbCBncmFzc2VzIGZvciBiaW9mdWVsIHByb2R1Y3Rpb24uIDkpIFNSRVMgQTIgc2NlbmFyaW8gLSBBIHNjZW5hcmlvIGNvbnNpc3RlbnQgd2l0aCB0aGUgSVBDQydzIFNSRVMgQTIgc3RvcnlsaW5lLiBJbiB0aGUgQTIgc2NlbmFyaW8sIGdsb2JhbCBwb3B1bGF0aW9uIGxldmVscyByZWFjaCAxNSBiaWxsaW9uIGJ5IDIxMDAuIEVjb25vbWljIGFjdGl2aXR5IGlzIHByaW9yaXRpemVkIG92ZXIgZW52aXJvbm1lbnRhbCBjb25zZXJ2YXRpb24uIFRoaXMgc2NlbmFyaW8gaGFzIHRoZSBoaWdoZXN0IG92ZXJhbGwgZXhwYW5zaW9uIG9mIHRyYWRpdGlvbmFsIGNyb3BsYW5kLCBnaXZlbiB0aGUgdmVyeSBoaWdoIGRlbWFuZCBmb3IgZm9vZHN0dWZmcyBhbmQgb3RoZXIgYWdyaWN1bHR1cmFsIGNvbW1vZGl0aWVzLiAxMCkgU1JFUyBCMSBzY2VuYXJpbyAtIEEgc2NlbmFyaW8gY29uc2lzdGVudCB3aXRoIHRoZSBJUENDJ3MgU1JFUyBCMSBzdG9yeWxpbmUuIEluIHRoZSBCMSBzY2VuYXJpbywgZW52aXJvbm1lbnRhbCBjb25zZXJ2YXRpb24gaXMgdmFsdWVkLCBhcyBpcyByZWdpb25hbCBjb29wZXJhdGlvbi4gTXVjaCBsZXNzIGFncmljdWx0dXJhbCBleHBhbnNpb24gb2NjdXJzIGFzIGNvbXBhcmVkIHRvIHRoZSBBMUIgb3IgQTIgc2NlbmFyaW9zLiAxMSkgU1JFUyBCMiBzY2VuYXJpbyAtIEEgc2NlbmFyaW8gY29uc2lzdGVudCB3aXRoIHRoZSBJUENDJ3MgU1JFUyBCMiBzdG9yeWxpbmUuIEluIHRoZSBCMiBzY2VuYXJpbywgZW52aXJvbm1lbnRhbCBjb25zZXJ2YXRpb24gaXMgaGlnaGx5IHZhbHVlZC4gT2YgdGhlIGVsZXZlbiBtb2RlbGVkIHNjZW5hcmlvcywgdGhlIEIyIHNjZW5hcmlvcyBoYXMgdGhlIHNtYWxsZXN0IG92ZXJhbGwgYWdyaWN1bHR1cmFsIGZvb3RwcmludCAodHJhZGl0aW9uYWwgY3JvcGxhbmQsIGhheS9wYXN0dXJlLCBwZXJlbm5pYWwgZ3Jhc3NlcykuICBGb3IgZWFjaCBvZiB0aGUgZWxldmVuIGxhbmQtdXNlIHNjZW5hcmlvcywgdGhyZWUgYWx0ZXJuYXRpdmUgY2xpbWF0ZSAvIHZlZ2V0YXRpb24gc2NlbmFyaW9zIHdlcmUgbW9kZWxlZCwgcmVzdWx0aW5nIGluIDMzIHVuaXF1ZSBzY2VuYXJpbyBjb21iaW5hdGlvbnMuIFRoZSBhbHRlcm5hdGl2ZSB2ZWdldGF0aW9uIHNjZW5hcmlvcyByZXByZXNlbnQgdGhlIHBvdGVudGlhbCBjaGFuZ2VzIGluIHF1YW50aXR5IGFuZCBkaXN0cmlidXRpb24gb2YgdGhlIG1ham9yIHZlZ2V0YXRpb24gY2xhc3NlcyB0aGF0IHdlcmUgbW9kZWxlZCAoZ3Jhc3NsYW5kLCBzaHJ1YmxhbmQsIGRlY2lkdW91cyBmb3Jlc3QsIG1peGVkIGZvcmVzdCwgYW5kIGV2ZXJncmVlbiBmb3Jlc3QpLCBhcyBhIHJlc3BvbnNlIHRvIHBvdGVudGlhbCBmdXR1cmUgY2xpbWF0ZSBjb25kaXRpb25zLiBUaGUgdGhyZWUgYWx0ZXJuYXRpdmUgdmVnZXRhdGlvbiBzY2VuYXJpb3MgY29ycmVzcG9uZCB0byBjbGltYXRlIGNvbmRpdGlvbnMgY29uc2lzdGVudCB3aXRoIDEpIFRoZSBJbnRlcmdvdmVybm1lbnRhbCBQYW5lbCBvbiBDbGltYXRlIENoYW5nZSAoSVBDQydzKSBSZXByZXNlbnRhdGl2ZSBDb25jZW50cmF0aW9uIFBhdGh3YXkgKFJDUCkgOC41IHNjZW5hcmlvIChhIHNjZW5hcmlvIG9mIGhpZ2ggY2xpbWF0ZSBjaGFuZ2UpLCAyKSB0aGUgUkNQIDQuNSBzY2VuYXJpbyAoYSBtaWQtbGV2ZWwgY2xpbWF0ZSBjaGFuZ2Ugc2NlbmFyaW8pLCBhbmQgMykgYSBtaWQtcG9pbnQgY2xpbWF0ZSB0aGF0IGF2ZXJhZ2VzIFJDUDQuNSBhbmQgUkNQOC41IGNvbmRpdGlvbnMgRGF0YSBhcmUgcHJvdmlkZWQgaGVyZSBmb3IgZWFjaCBvZiB0aGUgMzMgcG9zc2libGUgc2NlbmFyaW8gY29tYmluYXRpb25zLiBFYWNoIHNjZW5hcmlvIGZpbGUgaXMgcHJvdmlkZWQgYXMgYSB6aXAgZmlsZSBjb250YWluaW5nIDEpIHN0YXJ0aW5nIDIwMTQgbGFuZCBjb3ZlciBmb3IgdGhlIHJlZ2lvbiwgYW5kIDIpIGRlY2FkYWwgdGltZXN0ZXBzIG9mIG1vZGVsZWQgbGFuZC1jb3ZlciBmcm9tIDIwMjAgdGhyb3VnaCAyMTAwLiBUaGUgImF0dHJpYnV0ZXMiIHNlY3Rpb24gb2YgdGhlIG1ldGFkYXRhIHByb3ZpZGVzIGEga2V5IGZvciBpZGVudGlmeWluZyBmaWxlIG5hbWVzIGFzc29jaWF0ZWQgd2l0aCBlYWNoIG9mIHRoZSAzMyBzY2VuYXJpbyBjb21iaW5hdGlvbnMuICBTY2VuYXJpb3Mgd2l0aHQgdGhlIHNhbWUgc3BhdGlhbCwgdGhlbWF0aWMsIGFuZCB0ZW1wb3JhbCBjaGFyYWN0ZXJpc3RpY3MgYXMgdGhlc2UgaGF2ZSBiZWVuIGNyZWF0ZWQgZm9yIGFuIGFkamFjZW50IHBhcnQgb2YgdGhlIHNvdXRoZXJuIGFuZCBjZW50cmFsIEdyZWF0IFBsYWlucy4gIFRoZXNlIHNjZW5hcmlvcywgY292ZXJpbmcgdGhlIEdyZWF0IFBsYWlucyBMYW5kc2NhcGUgQ29uc2VydmF0aW9uIENvb3BlcmF0aXZlIGFyZWEsIG1heSBiZSBmb3VuZCBhdDogaHR0cHM6Ly93d3cuc2NpZW5jZWJhc2UuZ292L2NhdGFsb2cvaXRlbS81OWZjN2Q5YmU0YjA1MzExOTdiMmVhNzUuPC9kZXNjcmlwdGlvbj4KICA8L2Rlc2NyaXB0aW9ucz4KPC9yZXNvdXJjZT4=", "url": "https://www.sciencebase.gov/catalog/item/5b683db2e4b006a11f75b06a", "contentUrl": null, "metadataVersion": 2, "schemaVersion": "http://datacite.org/schema/kernel-4", "source": "mds", "isActive": true, "state": "findable", "reason": null, "viewCount": 0, "viewsOverTime": [], "downloadCount": 0, "downloadsOverTime": [], "referenceCount": 0, "citationCount": 1, "citationsOverTime": [ { "year": "2023", "total": 1 } ], "partCount": 0, "partOfCount": 0, "versionCount": 0, "versionOfCount": 0, "created": "2018-08-20T16:37:25.000Z", "registered": "2018-08-20T16:38:43.000Z", "published": "2018", "updated": "2023-12-10T04:21:49.000Z" }
}