Item talk:Q310224
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "Conference Paper", "name": "DisasterNet: Causal Bayesian networks with normalizing flows for cascading hazards", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70247436", "url": "https://pubs.usgs.gov/publication/70247436" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70247436 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1145/3580305.3599807", "url": "https://doi.org/10.1145/3580305.3599807" } ], "inLanguage": "en", "datePublished": "2023", "dateModified": "2023-08-08", "abstract": "Sudden-onset hazards like earthquakes often induce cascading secondary hazards (e.g., landslides, liquefaction, debris flows, etc.) and subsequent impacts (e.g., building and infrastructure damage) that cause catastrophic human and economic losses. Rapid and accurate estimates of these hazards and impacts are critical for timely and effective post-disaster responses. Emerging remote sensing techniques provide pre- and post-event satellite images for rapid hazard estimation. However, hazards and damage often co-occur or colocate with underlying complex cascading geophysical processes, making it challenging to directly differentiate multiple hazards and impacts from satellite imagery using existing single-hazard models. We introduce DisasterNet, a novel family of causal Bayesian networks to model processes that a major hazard triggers cascading hazards and impacts and further jointly induces signal changes in remotely sensed observations. We integrate normalizing flows to effectively model the highly complex causal dependencies in this cascading process. A triplet loss is further designed to leverage prior geophysical knowledge to enhance the identifiability of our highly expressive Bayesian networks. Moreover, a novel stochastic variational inference with normalizing flows is derived to jointly approximate posteriors of multiple unobserved hazards and impacts from noisy remote sensing observations. Integrating with the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system, our framework is evaluated in recent global earthquake events. Evaluation results show that DisasterNet significantly improves multiple hazard and impact estimation compared to existing USGS products.", "description": "13 p.", "publisher": { "@type": "Organization", "name": "Association for Computing Machinery" }, "author": [ { "@type": "Person", "name": "Li, Xuechun", "givenName": "Xuechun", "familyName": "Li", "affiliation": [ { "@type": "Organization", "name": "Stonybrook University" } ] }, { "@type": "Person", "name": "Burgi, Paula Madeline", "givenName": "Paula Madeline", "familyName": "Burgi", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-3001-5759", "url": "https://orcid.org/0000-0003-3001-5759" }, "affiliation": [ { "@type": "Organization", "name": "Geologic Hazards Science Center", "url": "https://www.usgs.gov/centers/geologic-hazards-science-center" } ] }, { "@type": "Person", "name": "Ma, Wei", "givenName": "Wei", "familyName": "Ma", "affiliation": [ { "@type": "Organization", "name": "Hong Kong Polytechnic University" } ] }, { "@type": "Person", "name": "Noh, Haeyoung", "givenName": "Haeyoung", "familyName": "Noh", "affiliation": [ { "@type": "Organization", "name": "Stanford University" } ] }, { "@type": "Person", "name": "Wald, David J. wald@usgs.gov", "givenName": "David J.", "familyName": "Wald", "email": "wald@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1454-4514", "url": "https://orcid.org/0000-0002-1454-4514" }, "affiliation": [ { "@type": "Organization", "name": "Geologic Hazards Science Center", "url": "https://www.usgs.gov/centers/geologic-hazards-science-center" } ] }, { "@type": "Person", "name": "Xu, Susu", "givenName": "Susu", "familyName": "Xu", "affiliation": [ { "@type": "Organization", "name": "Stony Brook University, NY, USA" } ] } ], "funder": [ { "@type": "Organization", "name": "Geologic Hazards Science Center", "url": "https://www.usgs.gov/centers/geologic-hazards-science-center" } ] }, "OpenAlex": { "_id": "https://openalex.org/w4385567489", "abstract_inverted_index": { "Sudden-onset": [ 0 ], "hazards": [ 1, 8, 36, 62, 82, 111, 179 ], "like": [ 2 ], "earthquakes": [ 3 ], "often": [ 4, 65 ], "induce": [ 5 ], "cascading": [ 6, 72, 110, 138 ], "secondary": [ 7 ], "(e.g.,": [ 9, 18 ], "landslides,": [ 10 ], "liquefaction,": [ 11 ], "debris": [ 12 ], "flows,": [ 13 ], "etc.)": [ 14 ], "and": [ 15, 20, 27, 31, 37, 43, 53, 63, 83, 112, 114, 180, 218 ], "subsequent": [ 16 ], "impacts": [ 17, 38, 84, 113, 181 ], "building": [ 19 ], "infrastructure": [ 21 ], "damage)": [ 22 ], "that": [ 23, 105, 212 ], "cause": [ 24 ], "catastrophic": [ 25 ], "human": [ 26 ], "economic": [ 28 ], "losses.": [ 29 ], "Rapid": [ 30 ], "accurate": [ 32 ], "estimates": [ 33 ], "of": [ 34, 98, 155, 176, 193 ], "these": [ 35 ], "are": [ 39 ], "critical": [ 40 ], "for": [ 41, 57, 196 ], "timely": [ 42 ], "effective": [ 44 ], "post-disaster": [ 45 ], "responses.": [ 46 ], "Emerging": [ 47 ], "remote": [ 48, 184 ], "sensing": [ 49, 185 ], "techniques": [ 50 ], "provide": [ 51 ], "pre-": [ 52 ], "post-event": [ 54 ], "satellite": [ 55, 86 ], "images": [ 56 ], "rapid": [ 58 ], "hazard": [ 59, 108, 217 ], "estimation.": [ 60 ], "However,": [ 61 ], "damage": [ 64 ], "co-occur": [ 66 ], "or": [ 67 ], "colocate": [ 68 ], "with": [ 69, 167, 188 ], "underlying": [ 70 ], "complex": [ 71, 133 ], "geophysical": [ 73, 149 ], "processes,": [ 74 ], "making": [ 75 ], "it": [ 76 ], "challenging": [ 77 ], "to": [ 78, 102, 128, 146, 151, 172, 222 ], "directly": [ 79 ], "differentiate": [ 80 ], "multiple": [ 81, 177, 216 ], "from": [ 85, 182 ], "imagery": [ 87 ], "using": [ 88 ], "existing": [ 89, 223 ], "single-hazard": [ 90 ], "models.": [ 91 ], "We": [ 92, 124 ], "introduce": [ 93 ], "DisasterNet,": [ 94 ], "a": [ 95, 106, 162 ], "novel": [ 96, 163 ], "family": [ 97 ], "causal": [ 99, 134 ], "Bayesian": [ 100, 159 ], "networks": [ 101 ], "model": [ 103, 130 ], "processes": [ 104 ], "major": [ 107 ], "triggers": [ 109 ], "further": [ 115, 144 ], "jointly": [ 116, 173 ], "induces": [ 117 ], "signal": [ 118 ], "changes": [ 119 ], "in": [ 120, 136, 204 ], "remotely": [ 121 ], "sensed": [ 122 ], "observations.": [ 123, 186 ], "integrate": [ 125 ], "normalizing": [ 126, 168 ], "flows": [ 127, 169 ], "effectively": [ 129 ], "the": [ 131, 153, 189 ], "highly": [ 132, 157 ], "dependencies": [ 135 ], "this": [ 137 ], "process.": [ 139 ], "A": [ 140 ], "triplet": [ 141 ], "loss": [ 142 ], "is": [ 143, 170, 202 ], "designed": [ 145 ], "leverage": [ 147 ], "prior": [ 148 ], "knowledge": [ 150 ], "enhance": [ 152 ], "identifiability": [ 154 ], "our": [ 156, 200 ], "expressive": [ 158 ], "networks.": [ 160 ], "Moreover,": [ 161 ], "stochastic": [ 164 ], "variational": [ 165 ], "inference": [ 166 ], "derived": [ 171 ], "approximate": [ 174 ], "posteriors": [ 175 ], "unobserved": [ 178 ], "noisy": [ 183 ], "Integrating": [ 187 ], "USGS": [ 190, 224 ], "Prompt": [ 191 ], "Assessment": [ 192 ], "Global": [ 194 ], "Earthquakes": [ 195 ], "Response": [ 197 ], "(PAGER)": [ 198 ], "system,": [ 199 ], "framework": [ 201 ], "evaluated": [ 203 ], "recent": [ 205 ], "global": [ 206 ], "earthquake": [ 207 ], "events.": [ 208 ], "Evaluation": [ 209 ], "results": [ 210 ], "show": [ 211 ], "DisasterNet": [ 213 ], "significantly": [ 214 ], "improves": [ 215 ], "impact": [ 219 ], "estimation": [ 220 ], "compared": [ 221 ], "products.": [ 225 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5101595708", "display_name": "Xuechun Li", "orcid": "https://orcid.org/0009-0004-5067-4553" }, "institutions": [ { "id": "https://openalex.org/I59553526", "display_name": "Stony Brook University", "ror": "https://ror.org/05qghxh33", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I59553526" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Xuechun Li", "raw_affiliation_strings": [ "SUNY at Stony Brook, Stony Brook, NY, USA" ], "affiliations": [ { "raw_affiliation_string": "SUNY at Stony Brook, Stony Brook, NY, USA", "institution_ids": [ "https://openalex.org/I59553526" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5019803887", "display_name": "P. Burgi", "orcid": "https://orcid.org/0000-0003-3001-5759" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Paula M. B\u00fcrgi", "raw_affiliation_strings": [ "U.S. Geological Survey, Golden, CO, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Golden, CO, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5100392071", "display_name": "Wei Wang", "orcid": "https://orcid.org/0000-0002-7344-998X" }, "institutions": [ { "id": "https://openalex.org/I14243506", "display_name": "Hong Kong Polytechnic University", "ror": "https://ror.org/0030zas98", "country_code": "HK", "type": "education", "lineage": [ "https://openalex.org/I14243506" ] } ], "countries": [ "HK" ], "is_corresponding": false, "raw_author_name": "Wei Ma", "raw_affiliation_strings": [ "Hong Kong Polytechnic University, Hong Kong, Hong Kong" ], "affiliations": [ { "raw_affiliation_string": "Hong Kong Polytechnic University, Hong Kong, Hong Kong", "institution_ids": [ "https://openalex.org/I14243506" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5082588269", "display_name": "Hae Young Noh", "orcid": "https://orcid.org/0000-0002-7998-3657" }, "institutions": [ { "id": "https://openalex.org/I97018004", "display_name": "Stanford University", "ror": "https://ror.org/00f54p054", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I97018004" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Hae Young Noh", "raw_affiliation_strings": [ "Stanford University, Stanford, CA, USA" ], "affiliations": [ { "raw_affiliation_string": "Stanford University, Stanford, CA, USA", "institution_ids": [ "https://openalex.org/I97018004" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5043225292", "display_name": "David J. Wald", "orcid": "https://orcid.org/0000-0002-1454-4514" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "David Jay Wald", "raw_affiliation_strings": [ "U.S. Geological Survey, Golden, CO, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Golden, CO, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5000157874", "display_name": "Susu Xu", "orcid": "https://orcid.org/0000-0001-7170-648X" }, "institutions": [ { "id": "https://openalex.org/I59553526", "display_name": "Stony Brook University", "ror": "https://ror.org/05qghxh33", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I59553526" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Susu Xu", "raw_affiliation_strings": [ "SUNY at Stony Brook, Stony Brook, NY, USA" ], "affiliations": [ { "raw_affiliation_string": "SUNY at Stony Brook, Stony Brook, NY, USA", "institution_ids": [ "https://openalex.org/I59553526" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1145/3580305.3599807", "pdf_url": null, "source": null, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": null, "issue": null, "first_page": null, "last_page": null }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4385567489", "cited_by_count": 3, "cited_by_percentile_year": { "min": 89, "max": 91 }, "concepts": [ { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.64739317 }, { "id": "https://openalex.org/C153083717", "wikidata": "https://www.wikidata.org/wiki/Q6535263", "display_name": "Leverage (statistics)", "level": 2, "score": 0.5749386 }, { "id": "https://openalex.org/C49261128", "wikidata": "https://www.wikidata.org/wiki/Q1132455", "display_name": "Hazard", "level": 2, "score": 0.52752 }, { "id": "https://openalex.org/C39410599", "wikidata": "https://www.wikidata.org/wiki/Q3433179", "display_name": "Natural hazard", "level": 2, "score": 0.44941294 }, { "id": "https://openalex.org/C107673813", "wikidata": "https://www.wikidata.org/wiki/Q812534", "display_name": "Bayesian probability", "level": 2, "score": 0.43880868 }, { "id": "https://openalex.org/C2778102629", "wikidata": "https://www.wikidata.org/wiki/Q725252", "display_name": "Satellite imagery", "level": 2, "score": 0.41761982 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.3847891 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.37792826 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.36679772 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.25894022 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 0.2319034 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.17502752 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.1563173 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 2, "counts_by_year": [ { "year": 2024, "cited_by_count": 3 } ], "created_date": "2023-08-05", "datasets": [], "display_name": "DisasterNet: Causal Bayesian Networks with Normalizing Flows for Cascading Hazards Estimation from Satellite Imagery", "doi": "https://doi.org/10.1145/3580305.3599807", "fulltext_origin": "pdf", "fwci": 1.672, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W4385567489", "ids": { "openalex": "https://openalex.org/W4385567489", "doi": "https://doi.org/10.1145/3580305.3599807" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 4, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/earthquake-detection", "display_name": "Earthquake Detection", "score": 0.521998 }, { "id": "https://openalex.org/keywords/seismic-event-classification", "display_name": "Seismic Event Classification", "score": 0.517104 }, { "id": "https://openalex.org/keywords/anomaly-detection", "display_name": "Anomaly Detection", "score": 0.512246 }, { "id": "https://openalex.org/keywords/seismic-signals", "display_name": "Seismic Signals", "score": 0.505979 }, { "id": "https://openalex.org/keywords/real-time-seismology", "display_name": "Real-Time Seismology", "score": 0.504943 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1145/3580305.3599807", "pdf_url": null, "source": null, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W4385567489/ngrams", "open_access": { "is_oa": true, "oa_status": "bronze", "oa_url": "https://doi.org/10.1145/3580305.3599807", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1145/3580305.3599807", "pdf_url": null, "source": null, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T11512", "display_name": "Anomaly Detection in High-Dimensional Data", "score": 0.9965, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2023-08-04", "publication_year": 2023, "referenced_works": [ "https://openalex.org/W2090056026", "https://openalex.org/W2123810534", "https://openalex.org/W2147373555", "https://openalex.org/W2189378346", "https://openalex.org/W2317992515", "https://openalex.org/W2501863942", "https://openalex.org/W2605336968", "https://openalex.org/W2610976552", "https://openalex.org/W2767126550", "https://openalex.org/W2772714071", "https://openalex.org/W2790230321", "https://openalex.org/W2883540819", "https://openalex.org/W2986624751", "https://openalex.org/W3000614793", "https://openalex.org/W3008116338", "https://openalex.org/W3009592576", "https://openalex.org/W3014291343", "https://openalex.org/W3020304821", "https://openalex.org/W3020913839", "https://openalex.org/W3039164877", "https://openalex.org/W3044784064", "https://openalex.org/W3099206234", "https://openalex.org/W3134889465", "https://openalex.org/W3138633680", "https://openalex.org/W3162554711", "https://openalex.org/W4220930066", "https://openalex.org/W4293032531", "https://openalex.org/W4300006963", "https://openalex.org/W4313314750", "https://openalex.org/W4320060013", "https://openalex.org/W4321596006" ], "referenced_works_count": 31, "related_works": [ "https://openalex.org/W4309189394", "https://openalex.org/W4250400068", "https://openalex.org/W4213244281", "https://openalex.org/W3120046742", "https://openalex.org/W2996428800", "https://openalex.org/W2189294538", "https://openalex.org/W2136739076", "https://openalex.org/W2092950803", "https://openalex.org/W1998349051", "https://openalex.org/W1991107850" ], "sustainable_development_goals": [ { "id": "https://metadata.un.org/sdg/13", "score": 0.49, "display_name": "Climate action" } ], "title": "DisasterNet: Causal Bayesian Networks with Normalizing Flows for Cascading Hazards Estimation from Satellite Imagery", "topics": [ { "id": "https://openalex.org/T11512", "display_name": "Anomaly Detection in High-Dimensional Data", "score": 0.9965, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11819", "display_name": "Digital Epidemiology and Disease Surveillance", "score": 0.9947, "subfield": { "id": "https://openalex.org/subfields/2713", "display_name": "Epidemiology" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T13018", "display_name": "Machine Learning for Earthquake Early Warning Systems", "score": 0.9767, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "proceedings-article", "updated_date": "2024-08-06T10:09:46.569014", "versions": [] }
}