Item talk:Q308209
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Methods for rapid quality assessment for national-scale land surface change monitoring", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70211706", "url": "https://pubs.usgs.gov/publication/70211706" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70211706 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/rs12162524", "url": "https://doi.org/10.3390/rs12162524" } ], "journal": { "@type": "Periodical", "name": "Remote Sensing", "volumeNumber": "12", "issueNumber": "16" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Remote Sensing" } ], "datePublished": "2020", "dateModified": "2020-08-07", "abstract": "Providing rapid access to land surface change data and information is a goal of the U.S. Geological Survey. Through the Land Change Monitoring, Assessment, and Projection (LCMAP) initiative, we have initiated a monitoring capability that involves generating a suite of ten annual land cover and land surface change datasets across the United States at a 30-m spatial resolution. During the LCMAP automated production on a tile-by-tile basis, erroneous data can occasionally be generated due to hardware or software failure. While crucial to assure the quality of the data, rapid evaluation of results at the pixel level during production is a substantial challenge because of the massive data volumes. Traditionally, product quality relies on the validation after production, which is inefficient to reproduce the whole product when an error occurs. This paper presents a method for automatically evaluating LCMAP results during the production phase based on fourteen indices to quickly find and flag erroneous tiles in the LCMAP products. The methods involved two types of comparisons: comparing LCMAP values across the temporal record to measure internal consistency and calculating agreement with multiple intervals of the National Land Cover Database (NLCD) data to measure the consistency with existing products. We developed indices on a tile-by-tile basis in order to quickly find and flag potential erroneous tiles by comparing with surrounding tiles using local outlier factor analysis. The analysis integrates all indices into a local outlier score (LOS) to detect erroneous tiles distinct from neighbor tiles. Our analysis showed that the methods were sensitive to partially erroneous tiles in the simulated data with a LOS higher than 2. The rapid quality assessment methods also successfully identified erroneous tiles during the LCMAP production, in which land surface change results were not properly saved to the products. The LOS map and indices for rapid quality assessment also point to directions for further investigations. A map of all LOS values by tile for the published LCMAP shows all LOS values are below 2. We also investigated tiles with high LOS to ensure the distinction with neighboring tiles was reasonable. An index in this study shows the overall agreement between LCMAP and NLCD on a tile basis is above 71.5% and has an average at 89.1% across the 422 tiles in the conterminous U.S. The workflow is suitable for other studies with a large volume of image products.", "description": "2524, 18 p.", "publisher": { "@type": "Organization", "name": "MDPI" }, "author": [ { "@type": "Person", "name": "Zhou, Qiang", "givenName": "Qiang", "familyName": "Zhou", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1282-8177", "url": "https://orcid.org/0000-0002-1282-8177" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Barber, Christopher", "givenName": "Christopher", "familyName": "Barber", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-0570-1140", "url": "https://orcid.org/0000-0003-0570-1140" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Xian, George Z. xian@usgs.gov", "givenName": "George Z.", "familyName": "Xian", "email": "xian@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-5674-2204", "url": "https://orcid.org/0000-0001-5674-2204" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] } ], "funder": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" } ] }, "OpenAlex": { "_id": "https://openalex.org/w3048264484", "abstract_inverted_index": { "Providing": [ 0 ], "rapid": [ 1, 88, 269, 301 ], "access": [ 2 ], "to": [ 3, 74, 81, 120, 147, 172, 191, 207, 236, 254, 292, 306, 337 ], "land": [ 4, 42, 45, 284 ], "surface": [ 5, 46, 285 ], "change": [ 6, 47, 286 ], "data": [ 7, 68, 106, 190, 261 ], "and": [ 8, 24, 44, 150, 176, 210, 298, 357, 366 ], "information": [ 9 ], "is": [ 10, 98, 118, 363, 383 ], "a": [ 11, 31, 37, 54, 64, 99, 132, 202, 231, 263, 360, 389 ], "goal": [ 12 ], "of": [ 13, 39, 85, 90, 103, 163, 183, 313, 392 ], "the": [ 14, 19, 50, 59, 83, 86, 93, 104, 113, 122, 140, 155, 169, 178, 184, 193, 250, 259, 279, 293, 320, 339, 352, 373, 377 ], "U.S.": [ 15 ], "Geological": [ 16 ], "Survey.": [ 17 ], "Through": [ 18 ], "Land": [ 20, 186 ], "Change": [ 21 ], "Monitoring,": [ 22 ], "Assessment,": [ 23 ], "Projection": [ 25 ], "(LCMAP)": [ 26 ], "initiative,": [ 27 ], "we": [ 28 ], "have": [ 29 ], "initiated": [ 30 ], "monitoring": [ 32 ], "capability": [ 33 ], "that": [ 34, 240, 249 ], "involves": [ 35 ], "generating": [ 36 ], "suite": [ 38 ], "10": [ 40 ], "annual": [ 41 ], "cover": [ 43 ], "datasets": [ 48 ], "across": [ 49, 168, 372 ], "United": [ 51, 379 ], "States": [ 52 ], "at": [ 53, 92, 370 ], "30-m": [ 55 ], "spatial": [ 56 ], "resolution.": [ 57 ], "During": [ 58 ], "LCMAP": [ 60, 137, 156, 166, 280, 322, 356 ], "automated": [ 61 ], "production,": [ 62, 116, 281 ], "on": [ 63, 112, 144, 201, 359 ], "tile-by-tile": [ 65, 203 ], "basis,": [ 66 ], "erroneous": [ 67, 152, 213, 238, 256, 276 ], "can": [ 69 ], "occasionally": [ 70 ], "be": [ 71 ], "generated": [ 72 ], "due": [ 73 ], "hardware": [ 75 ], "or": [ 76 ], "software": [ 77 ], "failure.": [ 78 ], "While": [ 79 ], "crucial": [ 80 ], "assure": [ 82 ], "quality": [ 84, 110, 270, 302 ], "data,": [ 87 ], "evaluation": [ 89 ], "results": [ 91, 138, 287 ], "pixel": [ 94 ], "level": [ 95 ], "during": [ 96, 139, 278 ], "production": [ 97, 141 ], "substantial": [ 100 ], "challenge": [ 101 ], "because": [ 102 ], "massive": [ 105 ], "volumes.": [ 107 ], "Traditionally,": [ 108 ], "product": [ 109, 124 ], "relies": [ 111 ], "validation": [ 114 ], "after": [ 115 ], "which": [ 117, 283 ], "inefficient": [ 119 ], "reproduce": [ 121 ], "whole": [ 123 ], "when": [ 125 ], "an": [ 126, 368 ], "error": [ 127 ], "occurs.": [ 128 ], "This": [ 129 ], "paper": [ 130 ], "presents": [ 131 ], "method": [ 133 ], "for": [ 134, 300, 308, 319, 385 ], "automatically": [ 135 ], "evaluating": [ 136 ], "phase": [ 142 ], "based": [ 143 ], "14": [ 145 ], "indices": [ 146, 200, 229, 299 ], "quickly": [ 148, 208 ], "find": [ 149, 209 ], "flag": [ 151, 211 ], "tiles": [ 153, 214, 219, 239, 257, 277, 333, 343, 375 ], "in": [ 154, 205, 258, 282, 348, 376 ], "products.": [ 157, 197, 294, 394 ], "The": [ 158, 225, 268, 295, 381 ], "methods": [ 159, 251, 272 ], "involved": [ 160 ], "two": [ 161 ], "types": [ 162 ], "comparisons:": [ 164 ], "comparing": [ 165, 216 ], "values": [ 167, 316, 326 ], "temporal": [ 170 ], "record": [ 171 ], "measure": [ 173, 192 ], "internal": [ 174 ], "consistency": [ 175, 194 ], "calculating": [ 177 ], "agreement": [ 179, 354 ], "with": [ 180, 195, 217, 262, 334, 341, 388 ], "multiple": [ 181 ], "intervals": [ 182 ], "National": [ 185 ], "Cover": [ 187 ], "Database": [ 188 ], "(NLCD)": [ 189 ], "existing": [ 196 ], "We": [ 198, 330 ], "developed": [ 199 ], "basis": [ 204, 362 ], "order": [ 206 ], "potential": [ 212 ], "by": [ 215, 317 ], "surrounding": [ 218 ], "using": [ 220 ], "local": [ 221, 232 ], "outlier": [ 222, 233 ], "factor": [ 223 ], "analysis.": [ 224 ], "analysis": [ 226, 247 ], "integrates": [ 227 ], "all": [ 228, 314, 324 ], "into": [ 230 ], "score": [ 234 ], "(LOS)": [ 235 ], "detect": [ 237 ], "are": [ 241, 327 ], "distinct": [ 242 ], "from": [ 243 ], "neighboring": [ 244, 342 ], "tiles.": [ 245 ], "Our": [ 246 ], "showed": [ 248 ], "were": [ 252, 288 ], "sensitive": [ 253 ], "partially": [ 255 ], "simulated": [ 260 ], "LOS": [ 264, 296, 315, 325, 336 ], "higher": [ 265 ], "than": [ 266 ], "2.": [ 267, 329 ], "assessment": [ 271, 303 ], "also": [ 273, 304, 331 ], "successfully": [ 274 ], "identified": [ 275 ], "not": [ 289 ], "properly": [ 290 ], "saved": [ 291 ], "map": [ 297, 312 ], "point": [ 305 ], "directions": [ 307 ], "further": [ 309 ], "investigations.": [ 310 ], "A": [ 311 ], "tile": [ 318, 361 ], "published": [ 321 ], "shows": [ 323, 351 ], "below": [ 328 ], "investigated": [ 332 ], "high": [ 335 ], "ensure": [ 338 ], "distinction": [ 340 ], "was": [ 344 ], "reasonable.": [ 345 ], "An": [ 346 ], "index": [ 347 ], "this": [ 349 ], "study": [ 350 ], "overall": [ 353 ], "between": [ 355 ], "NLCD": [ 358 ], "above": [ 364 ], "71.5%": [ 365 ], "has": [ 367 ], "average": [ 369 ], "89.1%": [ 371 ], "422": [ 374 ], "conterminous": [ 378 ], "States.": [ 380 ], "workflow": [ 382 ], "suitable": [ 384 ], "other": [ 386 ], "studies": [ 387 ], "large": [ 390 ], "volume": [ 391 ], "image": [ 393 ] }, "apc_list": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "apc_paid": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5020198396", "display_name": "Qiang Zhou", "orcid": "https://orcid.org/0000-0002-1282-8177" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, { "id": "https://openalex.org/I121847817", "display_name": "The Graduate Center, CUNY", "ror": "https://ror.org/00awd9g61", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I121847817" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Qiang Zhou", "raw_affiliation_strings": [ "ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397", "https://openalex.org/I121847817" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5103493997", "display_name": "Christopher Barber", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Christopher Barber", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5012129280", "display_name": "George Xian", "orcid": "https://orcid.org/0000-0001-5674-2204" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "George Xian", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12162524", "pdf_url": "https://www.mdpi.com/2072-4292/12/16/2524/pdf?version=1596701752", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "12", "issue": "16", "first_page": "2524", "last_page": "2524" }, "citation_normalized_percentile": { "value": 0.539283, "is_in_top_1_percent": false, "is_in_top_10_percent": false }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W3048264484", "cited_by_count": 2, "cited_by_percentile_year": { "min": 72, "max": 76 }, "concepts": [ { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.60459864 }, { "id": "https://openalex.org/C79337645", "wikidata": "https://www.wikidata.org/wiki/Q779824", "display_name": "Outlier", "level": 2, "score": 0.60126483 }, { "id": "https://openalex.org/C77088390", "wikidata": "https://www.wikidata.org/wiki/Q8513", "display_name": "Database", "level": 1, "score": 0.5382741 }, { "id": "https://openalex.org/C2776436953", "wikidata": "https://www.wikidata.org/wiki/Q5163215", "display_name": "Consistency (knowledge bases)", "level": 2, "score": 0.5219516 }, { "id": "https://openalex.org/C2780728851", "wikidata": "https://www.wikidata.org/wiki/Q468402", "display_name": "Tile", "level": 2, "score": 0.51610225 }, { "id": "https://openalex.org/C2778755073", "wikidata": "https://www.wikidata.org/wiki/Q10858537", "display_name": "Scale (ratio)", "level": 2, "score": 0.51158863 }, { "id": "https://openalex.org/C2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 0.50873286 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.5080087 }, { "id": "https://openalex.org/C2780009758", "wikidata": "https://www.wikidata.org/wiki/Q6804172", "display_name": "Measure (data warehouse)", "level": 2, "score": 0.47094285 }, { "id": "https://openalex.org/C2778348673", "wikidata": "https://www.wikidata.org/wiki/Q739302", "display_name": "Production (economics)", "level": 2, "score": 0.448866 }, { "id": "https://openalex.org/C90673727", "wikidata": "https://www.wikidata.org/wiki/Q901718", "display_name": "Product (mathematics)", "level": 2, "score": 0.4304887 }, { "id": "https://openalex.org/C2779530757", "wikidata": "https://www.wikidata.org/wiki/Q1207505", "display_name": "Quality (philosophy)", "level": 2, "score": 0.42769688 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.3862108 }, { "id": "https://openalex.org/C4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 0.29023948 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 0.2017805 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.14422676 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.120244354 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.112163216 }, { "id": "https://openalex.org/C147176958", "wikidata": "https://www.wikidata.org/wiki/Q77590", "display_name": "Civil engineering", "level": 1, "score": 0.10735336 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.08390266 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C111472728", "wikidata": "https://www.wikidata.org/wiki/Q9471", "display_name": "Epistemology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C139719470", "wikidata": "https://www.wikidata.org/wiki/Q39680", "display_name": "Macroeconomics", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5020198396" ], "corresponding_institution_ids": [ "https://openalex.org/I1286329397", "https://openalex.org/I121847817" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2023, "cited_by_count": 1 }, { "year": 2021, "cited_by_count": 1 } ], "created_date": "2020-08-13", "datasets": [], "display_name": "Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring", "doi": "https://doi.org/10.3390/rs12162524", "fwci": 0.241, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W3048264484", "ids": { "openalex": "https://openalex.org/W3048264484", "doi": "https://doi.org/10.3390/rs12162524", "mag": "3048264484" }, "indexed_in": [ "crossref", "doaj" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/land-use-change", "display_name": "land-use change", "score": 0.51749 }, { "id": "https://openalex.org/keywords/land-cover", "display_name": "Land cover", "score": 0.50873286 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.502505 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12162524", "pdf_url": "https://www.mdpi.com/2072-4292/12/16/2524/pdf?version=1596701752", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": false, "landing_page_url": "https://doaj.org/article/f02ad98ed6b24007b81e5b8ae0ae2a02", "pdf_url": null, "source": { "id": "https://openalex.org/S4306401280", "display_name": "DOAJ (DOAJ: Directory of Open Access Journals)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": null, "host_organization_name": null, "host_organization_lineage": [], "host_organization_lineage_names": [], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 2, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W3048264484/ngrams", "open_access": { "is_oa": true, "oa_status": "gold", "oa_url": "https://www.mdpi.com/2072-4292/12/16/2524/pdf?version=1596701752", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12162524", "pdf_url": "https://www.mdpi.com/2072-4292/12/16/2524/pdf?version=1596701752", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9971, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2020-08-06", "publication_year": 2020, "referenced_works": [ "https://openalex.org/W1981213426", "https://openalex.org/W1983248868", "https://openalex.org/W1996824026", "https://openalex.org/W2019652370", "https://openalex.org/W2028707934", "https://openalex.org/W2041184937", "https://openalex.org/W2043754739", "https://openalex.org/W2045906914", "https://openalex.org/W2046703661", "https://openalex.org/W2055718260", "https://openalex.org/W2058963764", "https://openalex.org/W2061597930", "https://openalex.org/W2104935022", "https://openalex.org/W2110832309", "https://openalex.org/W2117141344", "https://openalex.org/W2123807796", "https://openalex.org/W2126822288", "https://openalex.org/W2127559745", "https://openalex.org/W2138800506", "https://openalex.org/W2155110003", "https://openalex.org/W2161570034", "https://openalex.org/W2164943663", "https://openalex.org/W2199321793", "https://openalex.org/W2233818796", "https://openalex.org/W2266902344", "https://openalex.org/W2510369113", "https://openalex.org/W2560167313", "https://openalex.org/W2581906016", "https://openalex.org/W2766727660", "https://openalex.org/W2794891691", "https://openalex.org/W2891721681", "https://openalex.org/W2898756012", "https://openalex.org/W2942887091", "https://openalex.org/W2950541263", "https://openalex.org/W2967165937", "https://openalex.org/W3003421670", "https://openalex.org/W3122084549", "https://openalex.org/W3140266540", "https://openalex.org/W4240044889", "https://openalex.org/W4243469151" ], "referenced_works_count": 40, "related_works": [ "https://openalex.org/W4246369972", "https://openalex.org/W4244869112", "https://openalex.org/W38346124", "https://openalex.org/W2777914781", "https://openalex.org/W2581250438", "https://openalex.org/W2502442966", "https://openalex.org/W2383936314", "https://openalex.org/W2138666621", "https://openalex.org/W2114959296", "https://openalex.org/W1992771654" ], "sustainable_development_goals": [ { "display_name": "Life on land", "id": "https://metadata.un.org/sdg/15", "score": 0.64 } ], "title": "Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9971, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "score": 0.9903, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "score": 0.985, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-08T22:56:40.162185", "versions": [] }
}