Item talk:Q306732

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "CreativeWork",
   "additionalType": "Conference Paper",
   "name": "Invertibility aware integration of static and time-series data: An application to lake temperature modeling",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70237351",
       "url": "https://pubs.usgs.gov/publication/70237351"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70237351
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1137/1.9781611977172.79",
       "url": "https://doi.org/10.1137/1.9781611977172.79"
     }
   ],
   "inLanguage": "en",
   "datePublished": "2022",
   "dateModified": "2022-10-11",
   "abstract": "Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report relative improvement of 4% to capture data heterogeneity and simultaneously outperform baseline predictions by 12% when static features are unavailable.",
   "description": "9 p.",
   "publisher": {
     "@type": "Organization",
     "name": "SIAM"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Tayal, Kshitij",
       "givenName": "Kshitij",
       "familyName": "Tayal",
       "affiliation": [
         {
           "@type": "Organization",
           "name": "University of Minnesota"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Jia, Xiaowei",
       "givenName": "Xiaowei",
       "familyName": "Jia",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0001-8544-5233",
         "url": "https://orcid.org/0000-0001-8544-5233"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "University of Minnesota"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Ghosh, Rahul",
       "givenName": "Rahul",
       "familyName": "Ghosh",
       "affiliation": [
         {
           "@type": "Organization",
           "name": "University of Minnesota"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Willard, Jared",
       "givenName": "Jared",
       "familyName": "Willard",
       "affiliation": [
         {
           "@type": "Organization",
           "name": "University of Minnesota"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Read, Jordan",
       "givenName": "Jordan",
       "familyName": "Read",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-3888-6631",
         "url": "https://orcid.org/0000-0002-3888-6631"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "WMA - Integrated Information Dissemination Division",
           "url": "https://www.usgs.gov/mission-areas/water-resources"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Kumar, Vipin",
       "givenName": "Vipin",
       "familyName": "Kumar",
       "affiliation": [
         {
           "@type": "Organization",
           "name": "University of Minnesota"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "WMA - Integrated Information Dissemination Division",
       "url": "https://www.usgs.gov/mission-areas/water-resources"
     }
   ]
 },
 "OpenAlex": {
   "_id": "https://openalex.org/w4226277206",
   "abstract_inverted_index": {
     "Previous": [
       0,
       232
     ],
     "chapter": [
       1,
       3,
       233,
       235
     ],
     "Next": [
       2,
       234
     ],
     "Full": [
       4
     ],
     "AccessProceedings": [
       5
     ],
     "Proceedings": [
       6
     ],
     "of": [
       7,
       19,
       65,
       162,
       203,
       214
     ],
     "the": [
       8,
       69,
       101,
       104,
       122,
       163,
       177,
       187,
       200,
       207
     ],
     "2022": [
       9
     ],
     "SIAM": [
       10
     ],
     "International": [
       11
     ],
     "Conference": [
       12
     ],
     "on": [
       13,
       79,
       198
     ],
     "Data": [
       14
     ],
     "Mining": [
       15
     ],
     "(SDM)Invertibility": [
       16
     ],
     "aware": [
       17
     ],
     "Integration": [
       18
     ],
     "Static": [
       20
     ],
     "and": [
       21,
       39,
       51,
       74,
       84,
       114,
       136,
       149,
       166,
       175,
       210,
       220
     ],
     "Time-series": [
       22
     ],
     "data:": [
       23
     ],
     "An": [
       24
     ],
     "application": [
       25
     ],
     "to": [
       26,
       58,
       100,
       120,
       168,
       216
     ],
     "Lake": [
       27
     ],
     "Temperature": [
       28
     ],
     "ModelingKshitij": [
       29
     ],
     "Tayal,": [
       30,
       42
     ],
     "Xiaowei": [
       31,
       43
     ],
     "Jia,": [
       32,
       44
     ],
     "Rahul": [
       33,
       45
     ],
     "Ghosh,": [
       34,
       46
     ],
     "Jared": [
       35,
       47
     ],
     "Willard,": [
       36,
       48
     ],
     "Jordan": [
       37,
       49
     ],
     "Read,": [
       38,
       50
     ],
     "Vipin": [
       40,
       52
     ],
     "KumarKshitij": [
       41
     ],
     "Kumarpp.702": [
       53
     ],
     "-": [
       54
     ],
     "710Chapter": [
       55
     ],
     "DOI:https://doi.org/10.1137/1.9781611977172.79PDFBibTexSections": [
       56
     ],
     "ToolsAdd": [
       57
     ],
     "favoritesExport": [
       59
     ],
     "CitationTrack": [
       60
     ],
     "CitationsEmail": [
       61
     ],
     "SectionsAboutAbstract": [
       62
     ],
     "Accurate": [
       63
     ],
     "predictions": [
       64,
       224
     ],
     "water": [
       66,
       80
     ],
     "temperature": [
       67,
       93,
       171,
       201
     ],
     "are": [
       68,
       192,
       230
     ],
     "foundation": [
       70
     ],
     "for": [
       71,
       91,
       133
     ],
     "many": [
       72
     ],
     "decisions": [
       73
     ],
     "regulations,": [
       75
     ],
     "with": [
       76
     ],
     "direct": [
       77
     ],
     "impacts": [
       78
     ],
     "quality,": [
       81
     ],
     "fishery": [
       82
     ],
     "yields,": [
       83
     ],
     "power": [
       85
     ],
     "production.": [
       86
     ],
     "Building": [
       87
     ],
     "accurate": [
       88
     ],
     "broad-scale": [
       89
     ],
     "models": [
       90
     ],
     "lake": [
       92,
       109,
       155
     ],
     "prediction": [
       94,
       188
     ],
     "remains": [
       95
     ],
     "challenging": [
       96
     ],
     "in": [
       97,
       103,
       139,
       153,
       206
     ],
     "practice": [
       98
     ],
     "due": [
       99
     ],
     "variability": [
       102
     ],
     "data": [
       105,
       138,
       218
     ],
     "distribution": [
       106
     ],
     "across": [
       107
     ],
     "different": [
       108
     ],
     "systems": [
       110
     ],
     "monitored": [
       111
     ],
     "by": [
       112,
       225
     ],
     "static": [
       113,
       135,
       178,
       190,
       228
     ],
     "time-series": [
       115,
       137
     ],
     "data.": [
       116
     ],
     "In": [
       117
     ],
     "this": [
       118
     ],
     "paper,": [
       119
     ],
     "tackle": [
       121
     ],
     "above": [
       123
     ],
     "challenges,": [
       124
     ],
     "we": [
       125,
       144
     ],
     "propose": [
       126
     ],
     "a": [
       127
     ],
     "novel": [
       128
     ],
     "machine": [
       129
     ],
     "learning": [
       130
     ],
     "based": [
       131
     ],
     "approach": [
       132
     ],
     "integrating": [
       134
     ],
     "deep": [
       140
     ],
     "recurrent": [
       141
     ],
     "models,": [
       142
     ],
     "which": [
       143
     ],
     "call": [
       145
     ],
     "Invertibility-Aware-Long": [
       146
     ],
     "Short-Term": [
       147
     ],
     "Memory(IA-LSTM),": [
       148
     ],
     "demonstrate": [
       150
     ],
     "its": [
       151
     ],
     "effectiveness": [
       152
     ],
     "predicting": [
       154,
       199
     ],
     "temperature.": [
       156
     ],
     "Our": [
       157
     ],
     "proposed": [
       158
     ],
     "method": [
       159,
       197
     ],
     "integrates": [
       160
     ],
     "components": [
       161
     ],
     "Invertible": [
       164
     ],
     "Network": [
       165
     ],
     "LSTM": [
       167
     ],
     "better": [
       169
     ],
     "predict": [
       170
     ],
     "profiles": [
       172
     ],
     "(forward": [
       173
     ],
     "modeling)": [
       174,
       182
     ],
     "infer": [
       176
     ],
     "features": [
       179,
       229
     ],
     "(i.e.,": [
       180
     ],
     "inverse": [
       181
     ],
     "that": [
       183
     ],
     "can": [
       184
     ],
     "eventually": [
       185
     ],
     "enhance": [
       186
     ],
     "when": [
       189,
       227
     ],
     "variables": [
       191
     ],
     "missing.": [
       193
     ],
     "We": [
       194
     ],
     "evaluate": [
       195
     ],
     "our": [
       196
     ],
     "profile": [
       202
     ],
     "450": [
       204
     ],
     "lakes": [
       205
     ],
     "Midwestern": [
       208
     ],
     "U.S.": [
       209
     ],
     "report": [
       211
     ],
     "relative": [
       212
     ],
     "improvement": [
       213
     ],
     "4%": [
       215
     ],
     "capture": [
       217
     ],
     "heterogeneity": [
       219
     ],
     "simultaneously": [
       221
     ],
     "outperform": [
       222
     ],
     "baseline": [
       223
     ],
     "12%": [
       226
     ],
     "unavailable.": [
       231
     ],
     "RelatedDetails": [
       236
     ],
     "Published:2022eISBN:978-1-61197-717-2": [
       237
     ],
     "https://doi.org/10.1137/1.9781611977172Book": [
       238
     ],
     "Series": [
       239
     ],
     "Name:ProceedingsBook": [
       240
     ],
     "Code:PRDT22Book": [
       241
     ],
     "Pages:1-737": [
       242
     ]
   },
   "apc_list": null,
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5003264021",
         "display_name": "Kshitij Tayal",
         "orcid": null
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Kshitij Tayal",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5001445783",
         "display_name": "Xiaowei Jia",
         "orcid": "https://orcid.org/0000-0001-8544-5233"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Xiaowei Jia",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5101940087",
         "display_name": "Rahul Ghosh",
         "orcid": "https://orcid.org/0000-0001-8254-4789"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Rahul Ghosh",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5001009200",
         "display_name": "Jared Willard",
         "orcid": "https://orcid.org/0000-0003-4434-051X"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Jared Willard",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5044490476",
         "display_name": "Jordan S. Read",
         "orcid": "https://orcid.org/0000-0002-3888-6631"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Jordan Read",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5100645812",
         "display_name": "Vipin Kumar",
         "orcid": "https://orcid.org/0000-0002-9040-2665"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Vipin Kumar",
       "raw_affiliation_strings": [],
       "affiliations": []
     }
   ],
   "best_oa_location": null,
   "biblio": {
     "volume": null,
     "issue": null,
     "first_page": "702",
     "last_page": "710"
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4226277206",
   "cited_by_count": 3,
   "cited_by_percentile_year": {
     "min": 79,
     "max": 83
   },
   "concepts": [
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 0.5674313
     },
     {
       "id": "https://openalex.org/C143724316",
       "wikidata": "https://www.wikidata.org/wiki/Q312468",
       "display_name": "Series (stratigraphy)",
       "level": 2,
       "score": 0.5303757
     },
     {
       "id": "https://openalex.org/C151406439",
       "wikidata": "https://www.wikidata.org/wiki/Q186588",
       "display_name": "Time series",
       "level": 2,
       "score": 0.49518767
     },
     {
       "id": "https://openalex.org/C124101348",
       "wikidata": "https://www.wikidata.org/wiki/Q172491",
       "display_name": "Data mining",
       "level": 1,
       "score": 0.44748694
     },
     {
       "id": "https://openalex.org/C207467116",
       "wikidata": "https://www.wikidata.org/wiki/Q4385666",
       "display_name": "Inverse",
       "level": 2,
       "score": 0.4439114
     },
     {
       "id": "https://openalex.org/C9357733",
       "wikidata": "https://www.wikidata.org/wiki/Q6878417",
       "display_name": "Missing data",
       "level": 2,
       "score": 0.4422982
     },
     {
       "id": "https://openalex.org/C2778755073",
       "wikidata": "https://www.wikidata.org/wiki/Q10858537",
       "display_name": "Scale (ratio)",
       "level": 2,
       "score": 0.4406324
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 0.43336782
     },
     {
       "id": "https://openalex.org/C119857082",
       "wikidata": "https://www.wikidata.org/wiki/Q2539",
       "display_name": "Machine learning",
       "level": 1,
       "score": 0.4230106
     },
     {
       "id": "https://openalex.org/C108583219",
       "wikidata": "https://www.wikidata.org/wiki/Q197536",
       "display_name": "Deep learning",
       "level": 2,
       "score": 0.41392198
     },
     {
       "id": "https://openalex.org/C58640448",
       "wikidata": "https://www.wikidata.org/wiki/Q42515",
       "display_name": "Cartography",
       "level": 1,
       "score": 0.16782224
     },
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 0.15389481
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 0.11479455
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.10086021
     },
     {
       "id": "https://openalex.org/C2524010",
       "wikidata": "https://www.wikidata.org/wiki/Q8087",
       "display_name": "Geometry",
       "level": 1,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C151730666",
       "wikidata": "https://www.wikidata.org/wiki/Q7205",
       "display_name": "Paleontology",
       "level": 1,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 0,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 1
     },
     {
       "year": 2022,
       "cited_by_count": 2
     }
   ],
   "created_date": "2022-05-05",
   "datasets": [],
   "display_name": "Invertibility aware Integration of Static and Time-series data: An application to Lake Temperature Modeling",
   "doi": "https://doi.org/10.1137/1.9781611977172.79",
   "fwci": 3.693,
   "grants": [],
   "has_fulltext": false,
   "id": "https://openalex.org/W4226277206",
   "ids": {
     "openalex": "https://openalex.org/W4226277206",
     "doi": "https://doi.org/10.1137/1.9781611977172.79"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 0,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/hydrological-modeling",
       "display_name": "Hydrological Modeling",
       "score": 0.566123
     },
     {
       "id": "https://openalex.org/keywords/forecasting",
       "display_name": "Forecasting",
       "score": 0.553695
     },
     {
       "id": "https://openalex.org/keywords/rainfall-runoff-modeling",
       "display_name": "Rainfall-Runoff Modeling",
       "score": 0.54703
     },
     {
       "id": "https://openalex.org/keywords/groundwater-level-forecasting",
       "display_name": "Groundwater Level Forecasting",
       "score": 0.541093
     },
     {
       "id": "https://openalex.org/keywords/model-performance",
       "display_name": "Model Performance",
       "score": 0.506793
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": false,
       "landing_page_url": "https://doi.org/10.1137/1.9781611977172.79",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S4306463922",
         "display_name": "Society for Industrial and Applied Mathematics eBooks",
         "issn_l": null,
         "issn": null,
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": false,
         "host_organization": "https://openalex.org/P4310320508",
         "host_organization_name": "Society for Industrial and Applied Mathematics",
         "host_organization_lineage": [
           "https://openalex.org/P4310320508"
         ],
         "host_organization_lineage_names": [
           "Society for Industrial and Applied Mathematics"
         ],
         "type": "ebook platform"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W4226277206/ngrams",
   "open_access": {
     "is_oa": false,
     "oa_status": "closed",
     "oa_url": null,
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": false,
     "landing_page_url": "https://doi.org/10.1137/1.9781611977172.79",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S4306463922",
       "display_name": "Society for Industrial and Applied Mathematics eBooks",
       "issn_l": null,
       "issn": null,
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": false,
       "host_organization": "https://openalex.org/P4310320508",
       "host_organization_name": "Society for Industrial and Applied Mathematics",
       "host_organization_lineage": [
         "https://openalex.org/P4310320508"
       ],
       "host_organization_lineage_names": [
         "Society for Industrial and Applied Mathematics"
       ],
       "type": "ebook platform"
     },
     "license": null,
     "license_id": null,
     "version": null,
     "is_accepted": false,
     "is_published": false
   },
   "primary_topic": {
     "id": "https://openalex.org/T11490",
     "display_name": "Hydrological Modeling using Machine Learning Methods",
     "score": 0.996,
     "subfield": {
       "id": "https://openalex.org/subfields/2305",
       "display_name": "Environmental Engineering"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2022-01-01",
   "publication_year": 2022,
   "referenced_works": [],
   "referenced_works_count": 0,
   "related_works": [
     "https://openalex.org/W4380150146",
     "https://openalex.org/W4289597203",
     "https://openalex.org/W4283773154",
     "https://openalex.org/W3139174110",
     "https://openalex.org/W3024870410",
     "https://openalex.org/W2622688551",
     "https://openalex.org/W2410652950",
     "https://openalex.org/W2119012848",
     "https://openalex.org/W1990205660",
     "https://openalex.org/W1550175370"
   ],
   "sustainable_development_goals": [
     {
       "display_name": "Clean water and sanitation",
       "id": "https://metadata.un.org/sdg/6",
       "score": 0.68
     }
   ],
   "title": "Invertibility aware Integration of Static and Time-series data: An application to Lake Temperature Modeling",
   "topics": [
     {
       "id": "https://openalex.org/T11490",
       "display_name": "Hydrological Modeling using Machine Learning Methods",
       "score": 0.996,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10302",
       "display_name": "Importance and Conservation of Freshwater Biodiversity",
       "score": 0.9791,
       "subfield": {
         "id": "https://openalex.org/subfields/2309",
         "display_name": "Nature and Landscape Conservation"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10330",
       "display_name": "Hydrological Modeling and Water Resource Management",
       "score": 0.9464,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "book-chapter",
   "type_crossref": "book-chapter",
   "updated_date": "2024-08-07T15:49:09.759632",
   "versions": []
 }

}