Item talk:Q304054
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Fair graph learning using constraint-aware priority adjustment and graph masking in river networks", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70253018", "url": "https://pubs.usgs.gov/publication/70253018" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70253018 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1609/aaai.v38i20.30212", "url": "https://doi.org/10.1609/aaai.v38i20.30212" } ], "journal": { "@type": "Periodical", "name": "Proceedings of the AAAI Conference on Artificial Intelligence", "volumeNumber": "38", "issueNumber": "20" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Proceedings of the AAAI Conference on Artificial Intelligence" } ], "datePublished": "2024", "dateModified": "2024-04-16", "abstract": "Accurate prediction of water quality and quantity is crucial for sustainable development and human well-being. However, existing data-driven methods often suffer from spatial biases in model performance due to heterogeneous data, limited observations, and noisy sensor data. To overcome these challenges, we propose Fair-Graph, a novel graph-based recurrent neural network that leverages interrelated knowledge from multiple rivers to predict water flow and temperature within large-scale stream networks. Additionally, we introduce node-specific graph masks for information aggregation and adaptation to enhance prediction over heterogeneous river segments. To reduce performance disparities across river segments, we introduce a centralized coordination strategy that adjusts training priorities for segments. We evaluate the prediction of water temperature within the Delaware River Basin, and the prediction of streamflow using simulated data from U.S. National Water Model in the Houston River network. The results showcase improvements in predictive performance and highlight the proposed model's ability to maintain spatial fairness over different river segments.", "description": "9 p.", "publisher": { "@type": "Organization", "name": "Association for the Advancement of Artificial Intelligence" }, "author": [ { "@type": "Person", "name": "He, Erhu", "givenName": "Erhu", "familyName": "He", "affiliation": [ { "@type": "Organization", "name": "University of Pittsburgh" } ] }, { "@type": "Person", "name": "Xie, Yiqun", "givenName": "Yiqun", "familyName": "Xie", "affiliation": [ { "@type": "Organization", "name": "University of Maryland" } ] }, { "@type": "Person", "name": "Sun, Alexander Y.", "givenName": "Alexander Y.", "familyName": "Sun", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-6365-8526", "url": "https://orcid.org/0000-0002-6365-8526" }, "affiliation": [ { "@type": "Organization", "name": "University of Texas at Austin" } ] }, { "@type": "Person", "name": "Zwart, Jacob Aaron", "givenName": "Jacob Aaron", "familyName": "Zwart", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-3870-405X", "url": "https://orcid.org/0000-0002-3870-405X" }, "affiliation": [ { "@type": "Organization", "name": "WMA - Integrated Information Dissemination Division", "url": "https://www.usgs.gov/mission-areas/water-resources" } ] }, { "@type": "Person", "name": "Yang, Jie", "givenName": "Jie", "familyName": "Yang", "affiliation": [ { "@type": "Organization", "name": "University of Minnesota" } ] }, { "@type": "Person", "name": "Jin, Zhenong", "givenName": "Zhenong", "familyName": "Jin", "affiliation": [ { "@type": "Organization", "name": "University of Minnesota" } ] }, { "@type": "Person", "name": "Wang, Yang", "givenName": "Yang", "familyName": "Wang" }, { "@type": "Person", "name": "Karimi, Hassan Ali", "givenName": "Hassan Ali", "familyName": "Karimi", "affiliation": [ { "@type": "Organization", "name": "University of Pittsburgh" } ] }, { "@type": "Person", "name": "Jia, Xiaowei", "givenName": "Xiaowei", "familyName": "Jia", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8544-5233", "url": "https://orcid.org/0000-0001-8544-5233" }, "affiliation": [ { "@type": "Organization", "name": "University of Minnesota" } ] } ], "funder": [ { "@type": "Organization", "name": "WMA - Integrated Information Dissemination Division", "url": "https://www.usgs.gov/mission-areas/water-resources" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "unknown", "name": "Delaware River basin" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "coordinates": [ [ [ -76.19185307052085, 38.71562965387949 ], [ -74.4374506373952, 38.7070541171185 ], [ -74.13043021159795, 41.597382404326765 ], [ -75.720357416618, 41.63871233834436 ], [ -76.19185307052085, 38.71562965387949 ] ] ], "type": "Polygon" } } ] } } }, { "@type": "GeoCoordinates", "latitude": 40.14157596034322, "longitude": -75.12480672618177 } ] } ] }, "OpenAlex": { "_id": "https://openalex.org/w4393157179", "abstract_inverted_index": { "Accurate": [ 0 ], "prediction": [ 1, 80, 107, 118 ], "of": [ 2, 108, 119 ], "water": [ 3, 59, 109 ], "quality": [ 4 ], "and": [ 5, 12, 33, 61, 76, 116, 141 ], "quantity": [ 6 ], "is": [ 7 ], "crucial": [ 8 ], "for": [ 9, 73, 102 ], "sustainable": [ 10 ], "development": [ 11 ], "human": [ 13 ], "well-being.": [ 14 ], "However,": [ 15 ], "existing": [ 16 ], "data-driven": [ 17 ], "methods": [ 18 ], "often": [ 19 ], "suffer": [ 20 ], "from": [ 21, 54, 124 ], "spatial": [ 22, 149 ], "biases": [ 23 ], "in": [ 24, 129, 138 ], "model": [ 25 ], "performance": [ 26, 87, 140 ], "due": [ 27 ], "to": [ 28, 57, 78, 147 ], "heterogeneous": [ 29, 82 ], "data,": [ 30 ], "limited": [ 31 ], "observations,": [ 32 ], "noisy": [ 34 ], "sensor": [ 35 ], "data.": [ 36 ], "To": [ 37, 85 ], "overcome": [ 38 ], "these": [ 39 ], "challenges,": [ 40 ], "we": [ 41, 68, 92 ], "propose": [ 42 ], "Fair-Graph,": [ 43 ], "a": [ 44, 94 ], "novel": [ 45 ], "graph-based": [ 46 ], "recurrent": [ 47 ], "neural": [ 48 ], "network": [ 49 ], "that": [ 50, 98 ], "leverages": [ 51 ], "interrelated": [ 52 ], "knowledge": [ 53 ], "multiple": [ 55 ], "rivers": [ 56 ], "predict": [ 58 ], "flow": [ 60 ], "temperature": [ 62, 110 ], "within": [ 63, 111 ], "large-scale": [ 64 ], "stream": [ 65 ], "networks.": [ 66 ], "Additionally,": [ 67 ], "introduce": [ 69, 93 ], "node-specific": [ 70 ], "graph": [ 71 ], "masks": [ 72 ], "information": [ 74 ], "aggregation": [ 75 ], "adaptation": [ 77 ], "enhance": [ 79 ], "over": [ 81, 151 ], "river": [ 83, 90, 153 ], "segments.": [ 84, 103, 154 ], "reduce": [ 86 ], "disparities": [ 88 ], "across": [ 89 ], "segments,": [ 91 ], "centralized": [ 95 ], "coordination": [ 96 ], "strategy": [ 97 ], "adjusts": [ 99 ], "training": [ 100 ], "priorities": [ 101 ], "We": [ 104 ], "evaluate": [ 105 ], "the": [ 106, 112, 117, 130, 143 ], "Delaware": [ 113 ], "River": [ 114, 132 ], "Basin,": [ 115 ], "streamflow": [ 120 ], "using": [ 121 ], "simulated": [ 122 ], "data": [ 123 ], "U.S.": [ 125 ], "National": [ 126 ], "Water": [ 127 ], "Model": [ 128 ], "Houston": [ 131 ], "network.": [ 133 ], "The": [ 134 ], "results": [ 135 ], "showcase": [ 136 ], "improvements": [ 137 ], "predictive": [ 139 ], "highlight": [ 142 ], "proposed": [ 144 ], "model's": [ 145 ], "ability": [ 146 ], "maintain": [ 148 ], "fairness": [ 150 ], "different": [ 152 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5082048859", "display_name": "Erhu He", "orcid": "https://orcid.org/0000-0002-2949-6500" }, "institutions": [ { "id": "https://openalex.org/I170201317", "display_name": "University of Pittsburgh", "ror": "https://ror.org/01an3r305", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I170201317" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Erhu He", "raw_affiliation_strings": [ "University of Pittsburgh" ], "affiliations": [ { "raw_affiliation_string": "University of Pittsburgh", "institution_ids": [ "https://openalex.org/I170201317" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5049041437", "display_name": "Yiqun Xie", "orcid": "https://orcid.org/0000-0002-6439-1333" }, "institutions": [ { "id": "https://openalex.org/I126744593", "display_name": "University of Maryland, Baltimore", "ror": "https://ror.org/04rq5mt64", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I126744593" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Yiqun Xie", "raw_affiliation_strings": [ "The University of Maryland" ], "affiliations": [ { "raw_affiliation_string": "The University of Maryland", "institution_ids": [ "https://openalex.org/I126744593" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5011121567", "display_name": "Alexander Y. Sun", "orcid": "https://orcid.org/0000-0002-6365-8526" }, "institutions": [ { "id": "https://openalex.org/I86519309", "display_name": "The University of Texas at Austin", "ror": "https://ror.org/00hj54h04", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I86519309" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Alexander Sun", "raw_affiliation_strings": [ "The University of Texas at Austin" ], "affiliations": [ { "raw_affiliation_string": "The University of Texas at Austin", "institution_ids": [ "https://openalex.org/I86519309" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5005617262", "display_name": "Jacob A. Zwart", "orcid": "https://orcid.org/0000-0002-3870-405X" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jacob Zwart", "raw_affiliation_strings": [ "U.S. geological survey" ], "affiliations": [ { "raw_affiliation_string": "U.S. geological survey", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5101892131", "display_name": "Jie Yang", "orcid": "https://orcid.org/0009-0009-3750-3764" }, "institutions": [ { "id": "https://openalex.org/I2800403580", "display_name": "University of Minnesota System", "ror": "https://ror.org/03grvy078", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I2800403580" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jie Yang", "raw_affiliation_strings": [ "University of Minnesota" ], "affiliations": [ { "raw_affiliation_string": "University of Minnesota", "institution_ids": [ "https://openalex.org/I2800403580" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5078798454", "display_name": "Zhenong Jin", "orcid": "https://orcid.org/0000-0002-1252-2514" }, "institutions": [ { "id": "https://openalex.org/I2800403580", "display_name": "University of Minnesota System", "ror": "https://ror.org/03grvy078", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I2800403580" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Zhenong Jin", "raw_affiliation_strings": [ "University of Minnesota" ], "affiliations": [ { "raw_affiliation_string": "University of Minnesota", "institution_ids": [ "https://openalex.org/I2800403580" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5018229792", "display_name": "Yang Wang", "orcid": "https://orcid.org/0000-0003-4825-0829" }, "institutions": [ { "id": "https://openalex.org/I170201317", "display_name": "University of Pittsburgh", "ror": "https://ror.org/01an3r305", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I170201317" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Yang Wang", "raw_affiliation_strings": [ "University of Pittsburgh" ], "affiliations": [ { "raw_affiliation_string": "University of Pittsburgh", "institution_ids": [ "https://openalex.org/I170201317" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5010491831", "display_name": "Hassan A. Karimi", "orcid": "https://orcid.org/0000-0001-5331-5004" }, "institutions": [ { "id": "https://openalex.org/I170201317", "display_name": "University of Pittsburgh", "ror": "https://ror.org/01an3r305", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I170201317" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Hassan Karimi", "raw_affiliation_strings": [ "University of Pittsburgh" ], "affiliations": [ { "raw_affiliation_string": "University of Pittsburgh", "institution_ids": [ "https://openalex.org/I170201317" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5001445783", "display_name": "Xiaowei Jia", "orcid": "https://orcid.org/0000-0001-8544-5233" }, "institutions": [ { "id": "https://openalex.org/I170201317", "display_name": "University of Pittsburgh", "ror": "https://ror.org/01an3r305", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I170201317" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Xiaowei Jia", "raw_affiliation_strings": [ "University of Pittsburgh" ], "affiliations": [ { "raw_affiliation_string": "University of Pittsburgh", "institution_ids": [ "https://openalex.org/I170201317" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1609/aaai.v38i20.30212", "pdf_url": "https://ojs.aaai.org/index.php/AAAI/article/download/30212/32155", "source": { "id": "https://openalex.org/S4210191458", "display_name": "Proceedings of the AAAI Conference on Artificial Intelligence", "issn_l": "2159-5399", "issn": [ "2159-5399", "2374-3468" ], "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/P4310320058", "host_organization_name": "Association for the Advancement of Artificial Intelligence", "host_organization_lineage": [ "https://openalex.org/P4310320058" ], "host_organization_lineage_names": [ "Association for the Advancement of Artificial Intelligence" ], "type": "conference" }, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "38", "issue": "20", "first_page": "22087", "last_page": "22095" }, "citation_normalized_percentile": null, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4393157179", "cited_by_count": 0, "cited_by_percentile_year": { "min": 0, "max": 88 }, "concepts": [ { "id": "https://openalex.org/C132525143", "wikidata": "https://www.wikidata.org/wiki/Q141488", "display_name": "Graph", "level": 2, "score": 0.5694938 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.5459917 }, { "id": "https://openalex.org/C2777402240", "wikidata": "https://www.wikidata.org/wiki/Q6783436", "display_name": "Masking (illustration)", "level": 2, "score": 0.5087152 }, { "id": "https://openalex.org/C2776036281", "wikidata": "https://www.wikidata.org/wiki/Q48769818", "display_name": "Constraint (computer-aided design)", "level": 2, "score": 0.45488125 }, { "id": "https://openalex.org/C80444323", "wikidata": "https://www.wikidata.org/wiki/Q2878974", "display_name": "Theoretical computer science", "level": 1, "score": 0.4122882 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.26335752 }, { "id": "https://openalex.org/C142362112", "wikidata": "https://www.wikidata.org/wiki/Q735", "display_name": "Art", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C153349607", "wikidata": "https://www.wikidata.org/wiki/Q36649", "display_name": "Visual arts", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 1, "counts_by_year": [], "created_date": "2024-03-26", "datasets": [], "display_name": "Fair Graph Learning Using Constraint-Aware Priority Adjustment and Graph Masking in River Networks", "doi": "https://doi.org/10.1609/aaai.v38i20.30212", "fulltext_origin": "pdf", "fwci": 0.0, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W4393157179", "ids": { "openalex": "https://openalex.org/W4393157179", "doi": "https://doi.org/10.1609/aaai.v38i20.30212" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 5, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/signal-processing-on-graphs", "display_name": "Signal Processing on Graphs", "score": 0.569986 }, { "id": "https://openalex.org/keywords/transfer-learning", "display_name": "Transfer Learning", "score": 0.53655 }, { "id": "https://openalex.org/keywords/knowledge-graph-embedding", "display_name": "Knowledge Graph Embedding", "score": 0.535957 }, { "id": "https://openalex.org/keywords/representation-learning", "display_name": "Representation Learning", "score": 0.518793 }, { "id": "https://openalex.org/keywords/heterogeneous-networks", "display_name": "Heterogeneous Networks", "score": 0.51715 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1609/aaai.v38i20.30212", "pdf_url": "https://ojs.aaai.org/index.php/AAAI/article/download/30212/32155", "source": { "id": "https://openalex.org/S4210191458", "display_name": "Proceedings of the AAAI Conference on Artificial Intelligence", "issn_l": "2159-5399", "issn": [ "2159-5399", "2374-3468" ], "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/P4310320058", "host_organization_name": "Association for the Advancement of Artificial Intelligence", "host_organization_lineage": [ "https://openalex.org/P4310320058" ], "host_organization_lineage_names": [ "Association for the Advancement of Artificial Intelligence" ], "type": "conference" }, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W4393157179/ngrams", "open_access": { "is_oa": true, "oa_status": "bronze", "oa_url": "https://ojs.aaai.org/index.php/AAAI/article/download/30212/32155", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1609/aaai.v38i20.30212", "pdf_url": "https://ojs.aaai.org/index.php/AAAI/article/download/30212/32155", "source": { "id": "https://openalex.org/S4210191458", "display_name": "Proceedings of the AAAI Conference on Artificial Intelligence", "issn_l": "2159-5399", "issn": [ "2159-5399", "2374-3468" ], "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/P4310320058", "host_organization_name": "Association for the Advancement of Artificial Intelligence", "host_organization_lineage": [ "https://openalex.org/P4310320058" ], "host_organization_lineage_names": [ "Association for the Advancement of Artificial Intelligence" ], "type": "conference" }, "license": null, "license_id": null, "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T11273", "display_name": "Graph Neural Network Models and Applications", "score": 0.9924, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2024-03-24", "publication_year": 2024, "referenced_works": [], "referenced_works_count": 0, "related_works": [ "https://openalex.org/W4391913857", "https://openalex.org/W2748952813", "https://openalex.org/W2530322880", "https://openalex.org/W2478288626", "https://openalex.org/W2390279801", "https://openalex.org/W2382290278", "https://openalex.org/W2376932109", "https://openalex.org/W2358668433", "https://openalex.org/W2350741829", "https://openalex.org/W2001405890" ], "sustainable_development_goals": [], "title": "Fair Graph Learning Using Constraint-Aware Priority Adjustment and Graph Masking in River Networks", "topics": [ { "id": "https://openalex.org/T11273", "display_name": "Graph Neural Network Models and Applications", "score": 0.9924, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9715, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11307", "display_name": "Advances in Transfer Learning and Domain Adaptation", "score": 0.9008, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-11T23:08:50.882483", "versions": [] }
}