Item talk:Q273589
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70201693", "url": "https://pubs.usgs.gov/publication/70201693" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70201693 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.isprsjprs.2018.07.017", "url": "https://doi.org/10.1016/j.isprsjprs.2018.07.017" } ], "journal": { "@type": "Periodical", "name": "ISPRS Journal of Photogrammetry and Remote Sensing", "volumeNumber": "144", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "ISPRS Journal of Photogrammetry and Remote Sensing" } ], "datePublished": "2018", "dateModified": "2018-12-21", "abstract": "Mapping high resolution (30-m or better) cropland extent over very large areas such as continents or large countries or regions accurately, precisely, repeatedly, and rapidly is of great importance for addressing the global food and water security challenges. Such cropland extent products capture individual farm fields, small or large, and are crucial for developing accurate higher-level cropland products such as cropping intensities, crop types, crop watering methods (irrigated or rainfed), crop productivity, and crop water productivity. It also brings many challenges that include handling massively large data volumes, computing power, and collecting resource intensive reference training and validation data over complex geographic and political boundaries. Thereby, this study developed a precise and accurate Landsat 30-m derived cropland extent product for two very important, distinct, diverse, and large countries: Australia and China. The study used of eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI) of Landsat-8 every 16-day Operational Land Imager (OLI) data for the years 2013\u20132015. The classification was performed by using a pixel-based supervised random forest (RF) machine learning algorithm (MLA) executed on the Google Earth Engine (GEE) cloud computing platform. Each band was time-composited over 4\u20136 time-periods over a year using median value for various agro-ecological zones (AEZs) of Australia and China. This resulted in a 32\u201348-layer mega-file data-cube (MFDC) for each of the AEZs. Reference training and validation data were gathered from: (a) field visits, (b) sub-meter to 5-m very high spatial resolution imagery (VHRI) data, and (c) ancillary sources such as from the National agriculture bureaus. Croplands\u00a0versus\u00a0non-croplands knowledge base for training the RF algorithm were derived from MFDC using 958 reference-training samples for Australia and 2130 reference-training samples for China. The resulting 30-m cropland extent product was assessed for accuracies using independent validation samples: 900 for Australia and 1972 for China. The 30-m cropland extent product of Australia showed an overall accuracy of 97.6% with a producer\u2019s accuracy of 98.8% (errors of omissions\u202f=\u202f1.2%), and user\u2019s accuracy of 79% (errors of commissions\u202f=\u202f21%) for the cropland class. For China, overall accuracies were 94% with a producer\u2019s accuracy of 80% (errors of omissions\u202f=\u202f20%), and user\u2019s accuracy of 84.2% (errors of commissions\u202f=\u202f15.8%) for cropland class. Total cropland areas of Australia were estimated as 35.1 million hectares and 165.2 million hectares for China. These estimates were higher by 8.6% for Australia and 3.9% for China when compared with the traditionally derived national statistics. The cropland extent product further demonstrated the ability to estimate sub-national cropland areas accurately by providing an R2\u00a0value of 0.85 when compared with province-wise cropland areas of China. The study provides a paradigm-shift on how cropland maps are produced using multi-date remote sensing. These products can be browsed at\u00a0www.croplands.org\u00a0and made available for download at NASA\u2019s Land Processes Distributed Active Archive Center (LP DAAC)\u00a0https://www.lpdaac.usgs.gov/node/1282.", "description": "16 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Teluguntla, Pardhasaradhi", "givenName": "Pardhasaradhi", "familyName": "Teluguntla", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8060-9841", "url": "https://orcid.org/0000-0001-8060-9841" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Thenkabail, Prasad S. pthenkabail@usgs.gov", "givenName": "Prasad S.", "familyName": "Thenkabail", "email": "pthenkabail@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2182-8822", "url": "https://orcid.org/0000-0002-2182-8822" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Oliphant, Adam aoliphant@usgs.gov", "givenName": "Adam", "familyName": "Oliphant", "email": "aoliphant@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8622-7932", "url": "https://orcid.org/0000-0001-8622-7932" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Xiong, Jun jxiong@usgs.gov", "givenName": "Jun", "familyName": "Xiong", "email": "jxiong@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2320-0780", "url": "https://orcid.org/0000-0002-2320-0780" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Gumma, Murali Krishna", "givenName": "Murali Krishna", "familyName": "Gumma", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-3760-3935", "url": "https://orcid.org/0000-0002-3760-3935" } }, { "@type": "Person", "name": "Congalton, Russell G.", "givenName": "Russell G.", "familyName": "Congalton", "affiliation": [ { "@type": "Organization", "name": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" } ] }, { "@type": "Person", "name": "Yadav, Kamini", "givenName": "Kamini", "familyName": "Yadav", "affiliation": [ { "@type": "Organization", "name": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" } ] }, { "@type": "Person", "name": "Huete, Alfredo", "givenName": "Alfredo", "familyName": "Huete" } ], "funder": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "Australia", "url": "https://geonames.org/4315200" }, { "@type": "Place", "additionalType": "country", "name": "China", "url": "https://geonames.org/4055083" } ] }, "OpenAlex": { "_id": "https://openalex.org/W2885406917", "abstract_inverted_index": { "Mapping": [ 0 ], "high": [ 1, 236 ], "resolution": [ 2, 238 ], "(30-m": [ 3 ], "or": [ 4, 15, 18, 47, 68 ], "better)": [ 5 ], "cropland": [ 6, 39, 56, 116, 282, 302, 336, 366, 369, 406, 416, 430, 441 ], "extent": [ 7, 40, 117, 283, 303, 407 ], "over": [ 8, 99, 189, 192 ], "very": [ 9, 121, 235 ], "large": [ 10, 16, 85, 126 ], "areas": [ 11, 370, 417, 431 ], "such": [ 12, 58, 246 ], "as": [ 13, 59, 247, 375 ], "continents": [ 14 ], "countries": [ 17 ], "regions": [ 19 ], "accurately,": [ 20 ], "precisely,": [ 21 ], "repeatedly,": [ 22 ], "and": [ 23, 34, 49, 72, 90, 96, 102, 111, 125, 129, 144, 205, 222, 242, 273, 296, 324, 355, 379, 393, 456 ], "rapidly": [ 24 ], "is": [ 25 ], "of": [ 26, 134, 146, 203, 217, 305, 311, 317, 320, 327, 330, 348, 351, 358, 361, 371, 424, 432 ], "great": [ 27 ], "importance": [ 28 ], "for": [ 29, 52, 119, 155, 198, 215, 258, 271, 277, 287, 294, 298, 334, 365, 383, 391, 395, 459 ], "addressing": [ 30 ], "the": [ 31, 156, 177, 218, 249, 260, 335, 400, 411 ], "global": [ 32 ], "food": [ 33 ], "water": [ 35, 74 ], "security": [ 36 ], "challenges.": [ 37 ], "Such": [ 38 ], "products": [ 41, 57, 450 ], "capture": [ 42 ], "individual": [ 43 ], "farm": [ 44 ], "fields,": [ 45 ], "small": [ 46 ], "large,": [ 48 ], "are": [ 50, 443 ], "crucial": [ 51 ], "developing": [ 53 ], "accurate": [ 54, 112 ], "higher-level": [ 55 ], "cropping": [ 60 ], "intensities,": [ 61 ], "crop": [ 62, 64, 70, 73 ], "types,": [ 63 ], "watering": [ 65 ], "methods": [ 66 ], "(irrigated": [ 67 ], "rainfed),": [ 69 ], "productivity,": [ 71 ], "productivity.": [ 75 ], "It": [ 76 ], "also": [ 77 ], "brings": [ 78 ], "many": [ 79 ], "challenges": [ 80 ], "that": [ 81 ], "include": [ 82 ], "handling": [ 83 ], "massively": [ 84 ], "data": [ 86, 98, 154, 224 ], "volumes,": [ 87 ], "computing": [ 88, 183 ], "power,": [ 89 ], "collecting": [ 91 ], "resource": [ 92 ], "intensive": [ 93 ], "reference": [ 94 ], "training": [ 95, 221, 259 ], "validation": [ 97, 223, 291 ], "complex": [ 100 ], "geographic": [ 101 ], "political": [ 103 ], "boundaries.": [ 104 ], "Thereby,": [ 105 ], "this": [ 106 ], "study": [ 107, 132, 435 ], "developed": [ 108 ], "a": [ 109, 165, 193, 210, 314, 345, 437 ], "precise": [ 110 ], "Landsat": [ 113 ], "30-m": [ 114, 281, 301 ], "derived": [ 115, 264, 402 ], "product": [ 118, 284, 304, 408 ], "two": [ 120 ], "important,": [ 122 ], "distinct,": [ 123 ], "diverse,": [ 124 ], "countries:": [ 127 ], "Australia": [ 128, 204, 272, 295, 306, 372, 392 ], "China.": [ 130, 206, 278, 299, 384, 433 ], "The": [ 131, 159, 279, 300, 405, 434 ], "used": [ 133 ], "eight": [ 135 ], "bands": [ 136 ], "(blue,": [ 137 ], "green,": [ 138 ], "red,": [ 139 ], "NIR,": [ 140 ], "SWIR1,": [ 141 ], "SWIR2,": [ 142 ], "TIR1,": [ 143 ], "NDVI)": [ 145 ], "Landsat-8": [ 147 ], "every": [ 148 ], "16-day": [ 149 ], "Operational": [ 150 ], "Land": [ 151, 463 ], "Imager": [ 152 ], "(OLI)": [ 153 ], "years": [ 157 ], "2013\u20132015.": [ 158 ], "classification": [ 160 ], "was": [ 161, 187, 285 ], "performed": [ 162 ], "by": [ 163, 389, 419 ], "using": [ 164, 195, 267, 289, 445 ], "pixel-based": [ 166 ], "supervised": [ 167 ], "random": [ 168 ], "forest": [ 169 ], "(RF)": [ 170 ], "machine": [ 171 ], "learning": [ 172 ], "algorithm": [ 173, 262 ], "(MLA)": [ 174 ], "executed": [ 175 ], "on": [ 176, 439 ], "Google": [ 178 ], "Earth": [ 179 ], "Engine": [ 180 ], "(GEE)": [ 181 ], "cloud": [ 182 ], "platform.": [ 184 ], "Each": [ 185 ], "band": [ 186 ], "time-composited": [ 188 ], "4\u20136": [ 190 ], "time-periods": [ 191 ], "year": [ 194 ], "median": [ 196 ], "value": [ 197, 423 ], "various": [ 199 ], "agro-ecological": [ 200 ], "zones": [ 201 ], "(AEZs)": [ 202 ], "This": [ 207 ], "resulted": [ 208 ], "in": [ 209 ], "32\u201348-layer": [ 211 ], "mega-file": [ 212 ], "data-cube": [ 213 ], "(MFDC)": [ 214 ], "each": [ 216 ], "AEZs.": [ 219 ], "Reference": [ 220 ], "were": [ 225, 263, 342, 373, 387 ], "gathered": [ 226 ], "from:": [ 227 ], "(a)": [ 228 ], "field": [ 229 ], "visits,": [ 230 ], "(b)": [ 231 ], "sub-meter": [ 232 ], "to": [ 233, 413 ], "5-m": [ 234 ], "spatial": [ 237 ], "imagery": [ 239 ], "(VHRI)": [ 240 ], "data,": [ 241 ], "(c)": [ 243 ], "ancillary": [ 244 ], "sources": [ 245 ], "from": [ 248, 265 ], "National": [ 250 ], "agriculture": [ 251 ], "bureaus.": [ 252 ], "Croplands": [ 253 ], "versus": [ 254 ], "non-croplands": [ 255 ], "knowledge": [ 256 ], "base": [ 257 ], "RF": [ 261 ], "MFDC": [ 266 ], "958": [ 268 ], "reference-training": [ 269, 275 ], "samples": [ 270, 276 ], "2130": [ 274 ], "resulting": [ 280 ], "assessed": [ 286 ], "accuracies": [ 288, 341 ], "independent": [ 290 ], "samples:": [ 292 ], "900": [ 293 ], "1972": [ 297 ], "showed": [ 307 ], "an": [ 308, 421 ], "overall": [ 309, 340 ], "accuracy": [ 310, 316, 326, 347, 357 ], "97.6%": [ 312 ], "with": [ 313, 344, 399, 428 ], "producer\u2019s": [ 315, 346 ], "98.8%": [ 318 ], "(errors": [ 319, 329, 350, 360 ], "omissions": [ 321, 352 ], "=": [ 322, 332, 353, 363 ], "1.2%),": [ 323 ], "user\u2019s": [ 325, 356 ], "79%": [ 328 ], "commissions": [ 331, 362 ], "21%)": [ 333 ], "class.": [ 337, 367 ], "For": [ 338 ], "China,": [ 339 ], "94%": [ 343 ], "80%": [ 349 ], "20%),": [ 354 ], "84.2%": [ 359 ], "15.8%)": [ 364 ], "Total": [ 368 ], "estimated": [ 374 ], "35.1": [ 376 ], "million": [ 377, 381 ], "hectares": [ 378, 382 ], "165.2": [ 380 ], "These": [ 385, 449 ], "estimates": [ 386 ], "higher": [ 388 ], "8.6%": [ 390 ], "3.9%": [ 394 ], "China": [ 396 ], "when": [ 397, 426 ], "compared": [ 398, 427 ], "traditionally": [ 401 ], "national": [ 403 ], "statistics.": [ 404 ], "further": [ 409 ], "demonstrated": [ 410 ], "ability": [ 412 ], "estimate": [ 414 ], "sub-national": [ 415 ], "accurately": [ 418 ], "providing": [ 420 ], "R2": [ 422 ], "0.85": [ 425 ], "province-wise": [ 429 ], "provides": [ 436 ], "paradigm-shift": [ 438 ], "how": [ 440 ], "maps": [ 442 ], "produced": [ 444 ], "multi-date": [ 446 ], "remote": [ 447 ], "sensing.": [ 448 ], "can": [ 451 ], "be": [ 452 ], "browsed": [ 453 ], "at": [ 454, 461 ], "www.croplands.org": [ 455 ], "made": [ 457 ], "available": [ 458 ], "download": [ 460 ], "NASA\u2019s": [ 462 ], "Processes": [ 464 ], "Distributed": [ 465 ], "Active": [ 466 ], "Archive": [ 467 ], "Center": [ 468 ], "(LP": [ 469 ], "DAAC)": [ 470 ], "https://www.lpdaac.usgs.gov/node/1282.": [ 471 ] }, "apc_list": { "value": 3310, "currency": "USD", "value_usd": 3310, "provenance": "doaj" }, "apc_paid": { "value": 3310, "currency": "USD", "value_usd": 3310, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5014096050", "display_name": "Pardhasaradhi Teluguntla", "orcid": "https://orcid.org/0000-0001-8060-9841" }, "institutions": [ { "id": "https://openalex.org/I2800713631", "display_name": "NASA Research Park", "ror": "https://ror.org/04hccab49", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1280536761", "https://openalex.org/I2800713631", "https://openalex.org/I4210124779" ] }, { "id": "https://openalex.org/I4210109616", "display_name": "Bay Area Environmental Research Institute", "ror": "https://ror.org/024tt5x58", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] }, { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Pardhasaradhi Teluguntla", "raw_affiliation_strings": [ "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA 94035, USA", "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA 94035, USA", "institution_ids": [ "https://openalex.org/I2800713631", "https://openalex.org/I4210109616" ] }, { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5039070473", "display_name": "Prasad S. Thenkabail", "orcid": "https://orcid.org/0000-0002-2182-8822" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Prasad S Thenkabail", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5044607141", "display_name": "Adam Oliphant", "orcid": "https://orcid.org/0000-0001-8622-7932" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Adam Oliphant", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I1286329397", "https://openalex.org/I4210111045" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5002534050", "display_name": "Jun Xiong", "orcid": "https://orcid.org/0000-0002-2320-0780" }, "institutions": [ { "id": "https://openalex.org/I2800713631", "display_name": "NASA Research Park", "ror": "https://ror.org/04hccab49", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1280536761", "https://openalex.org/I2800713631", "https://openalex.org/I4210124779" ] }, { "id": "https://openalex.org/I4210109616", "display_name": "Bay Area Environmental Research Institute", "ror": "https://ror.org/024tt5x58", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jun Xiong", "raw_affiliation_strings": [ "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA 94035, USA" ], "affiliations": [ { "raw_affiliation_string": "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA 94035, USA", "institution_ids": [ "https://openalex.org/I2800713631", "https://openalex.org/I4210109616" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5084676540", "display_name": "Murali Krishna Gumma", "orcid": "https://orcid.org/0000-0002-3760-3935" }, "institutions": [ { "id": "https://openalex.org/I4210163774", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "ror": "https://ror.org/0541a3n79", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] } ], "countries": [ "IN" ], "is_corresponding": false, "raw_author_name": "Murali Krishna Gumma", "raw_affiliation_strings": [ "International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India" ], "affiliations": [ { "raw_affiliation_string": "International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India", "institution_ids": [ "https://openalex.org/I4210163774" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5022247838", "display_name": "Russell G. Congalton", "orcid": "https://orcid.org/0000-0003-3891-2163" }, "institutions": [ { "id": "https://openalex.org/I161057412", "display_name": "University of New Hampshire", "ror": "https://ror.org/01rmh9n78", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I161057412" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Russell G. Congalton", "raw_affiliation_strings": [ "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" ], "affiliations": [ { "raw_affiliation_string": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA", "institution_ids": [ "https://openalex.org/I161057412" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5032266925", "display_name": "Kamini Yadav", "orcid": "https://orcid.org/0000-0002-7560-8884" }, "institutions": [ { "id": "https://openalex.org/I161057412", "display_name": "University of New Hampshire", "ror": "https://ror.org/01rmh9n78", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I161057412" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Kamini Yadav", "raw_affiliation_strings": [ "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" ], "affiliations": [ { "raw_affiliation_string": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA", "institution_ids": [ "https://openalex.org/I161057412" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5046277669", "display_name": "Alfredo Huete", "orcid": "https://orcid.org/0000-0003-2809-2376" }, "institutions": [ { "id": "https://openalex.org/I114017466", "display_name": "University of Technology Sydney", "ror": "https://ror.org/03f0f6041", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I114017466" ] } ], "countries": [ "AU" ], "is_corresponding": false, "raw_author_name": "Alfredo Huete", "raw_affiliation_strings": [ "University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, Australia" ], "affiliations": [ { "raw_affiliation_string": "University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, Australia", "institution_ids": [ "https://openalex.org/I114017466" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "144", "issue": null, "first_page": "325", "last_page": "340" }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2885406917", "cited_by_count": 380, "cited_by_percentile_year": { "min": 99, "max": 100 }, "concepts": [ { "id": "https://openalex.org/c169258074", "wikidata": "https://www.wikidata.org/wiki/Q245748", "display_name": "Random forest", "level": 2, "score": 0.6090658, "qid": null }, { "id": "https://openalex.org/c79974875", "wikidata": "https://www.wikidata.org/wiki/Q483639", "display_name": "Cloud computing", "level": 2, "score": 0.5900269, "qid": null }, { "id": "https://openalex.org/c11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 0.5358964, "qid": "Q226190" }, { "id": "https://openalex.org/c62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.50905436, "qid": "Q158877" }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.46381634, "qid": "Q158969" }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.46219665, "qid": "Q166085" }, { "id": "https://openalex.org/c2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 0.45767802, "qid": null }, { "id": "https://openalex.org/c75684735", "wikidata": "https://www.wikidata.org/wiki/Q858810", "display_name": "Big data", "level": 2, "score": 0.43029675, "qid": null }, { "id": "https://openalex.org/c77088390", "wikidata": "https://www.wikidata.org/wiki/Q8513", "display_name": "Database", "level": 1, "score": 0.41121525, "qid": "Q165904" }, { "id": "https://openalex.org/c88463610", "wikidata": "https://www.wikidata.org/wiki/Q194118", "display_name": "Agricultural engineering", "level": 1, "score": 0.35614854, "qid": null }, { "id": "https://openalex.org/c4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 0.29440373, "qid": null }, { "id": "https://openalex.org/c119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.2446008, "qid": "Q169132" }, { "id": "https://openalex.org/c124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.21857214, "qid": "Q226221" }, { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.1736247, "qid": "Q158983" }, { "id": "https://openalex.org/c18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 0.10379067, "qid": "Q158972" }, { "id": "https://openalex.org/c111919701", "wikidata": "https://www.wikidata.org/wiki/Q9135", "display_name": "Operating system", "level": 1, "score": 0.0, "qid": "Q226285" }, { "id": "https://openalex.org/c127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.0, "qid": "Q158977" }, { "id": "https://openalex.org/c86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0, "qid": "Q158998" } ], "corresponding_author_ids": [ "https://openalex.org/A5014096050", "https://openalex.org/A5039070473" ], "corresponding_institution_ids": [ "https://openalex.org/I2800713631", "https://openalex.org/I4210109616", "https://openalex.org/I4210111045", "https://openalex.org/I1286329397", "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ], "countries_distinct_count": 3, "counts_by_year": [ { "year": 2024, "cited_by_count": 48 }, { "year": 2023, "cited_by_count": 80 }, { "year": 2022, "cited_by_count": 79 }, { "year": 2021, "cited_by_count": 78 }, { "year": 2020, "cited_by_count": 68 }, { "year": 2019, "cited_by_count": 21 }, { "year": 2018, "cited_by_count": 4 } ], "created_date": "2018-08-22", "datasets": [], "display_name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", "doi": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "fulltext_origin": "pdf", "fwci": 26.747, "grants": [ { "funder": "https://openalex.org/F4320306101", "funder_display_name": "National Aeronautics and Space Administration", "award_id": "29039" }, { "funder": "https://openalex.org/F4320306101", "funder_display_name": "National Aeronautics and Space Administration", "award_id": "NNH13AV82I" }, { "funder": "https://openalex.org/F4320332183", "funder_display_name": "U.S. Geological Survey", "award_id": "29039" }, { "funder": "https://openalex.org/F4320332183", "funder_display_name": "U.S. Geological Survey", "award_id": "NNH13AV82I" } ], "has_fulltext": true, "id": "https://openalex.org/W2885406917", "ids": { "openalex": "https://openalex.org/W2885406917", "doi": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "mag": "2885406917" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 7, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/land-suitability", "display_name": "Land Suitability", "score": 0.544472 }, { "id": "https://openalex.org/keywords/soil-evaluation", "display_name": "Soil Evaluation", "score": 0.537593 }, { "id": "https://openalex.org/keywords/crop-suitability", "display_name": "Crop Suitability", "score": 0.531182 }, { "id": "https://openalex.org/keywords/biomass-estimation", "display_name": "Biomass Estimation", "score": 0.511271 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.508185 }, { "id": "https://openalex.org/keywords/land-cover", "display_name": "Land cover", "score": 0.45767802 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": true, "landing_page_url": "http://hdl.handle.net/10453/128064", "pdf_url": "https://opus.lib.uts.edu.au/bitstream/10453/128064/1/1-s2.0-S0924271618302090-main.pdf", "source": { "id": "https://openalex.org/S4306401629", "display_name": "Open Publications Of UTS Scholars (University of Technology Sydney)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I114017466", "host_organization_name": "University of Technology Sydney", "host_organization_lineage": [ "https://openalex.org/I114017466" ], "host_organization_lineage_names": [ "University of Technology Sydney" ], "type": "repository" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": true, "landing_page_url": "http://oar.icrisat.org/10829/1/ISPRS%20Journal%20of%20Photogrammetry%20and%20Remote%20Sensing.pdf", "pdf_url": "http://oar.icrisat.org/10829/1/ISPRS%20Journal%20of%20Photogrammetry%20and%20Remote%20Sensing.pdf", "source": { "id": "https://openalex.org/S4306401867", "display_name": "Open Access Repository of ICRISAT (International Crops Research Institute for the Semi-Arid Tropics)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I4210163774", "host_organization_name": "International Crops Research Institute for the Semi-Arid Tropics", "host_organization_lineage": [ "https://openalex.org/I4210163774" ], "host_organization_lineage_names": [ "International Crops Research Institute for the Semi-Arid Tropics" ], "type": "repository" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "acceptedVersion", "is_accepted": true, "is_published": false } ], "locations_count": 3, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2885406917/ngrams", "open_access": { "is_oa": true, "oa_status": "hybrid", "oa_url": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2018-10-01", "publication_year": 2018, "referenced_works": [ "https://openalex.org/W1277711400", "https://openalex.org/W1482289351", "https://openalex.org/W1494131642", "https://openalex.org/W1598804140", "https://openalex.org/W1729623471", "https://openalex.org/W185213264", "https://openalex.org/W1968955602", "https://openalex.org/W1970687962", "https://openalex.org/W1971364019", "https://openalex.org/W1971683018", "https://openalex.org/W1979568597", "https://openalex.org/W1980225565", "https://openalex.org/W1981213426", "https://openalex.org/W1986738039", "https://openalex.org/W1990653740", "https://openalex.org/W1993585210", "https://openalex.org/W1994050572", "https://openalex.org/W2001510610", "https://openalex.org/W2001728294", "https://openalex.org/W2006929658", "https://openalex.org/W2008085934", "https://openalex.org/W2024339093", "https://openalex.org/W2027475314", "https://openalex.org/W2031775731", "https://openalex.org/W2031841848", "https://openalex.org/W2035222601", "https://openalex.org/W2037455286", "https://openalex.org/W2042386716", "https://openalex.org/W2042692910", "https://openalex.org/W2046033369", "https://openalex.org/W2049427966", "https://openalex.org/W2055248879", "https://openalex.org/W2058208710", "https://openalex.org/W2063907334", "https://openalex.org/W2072305677", "https://openalex.org/W2072465375", "https://openalex.org/W2076186394", "https://openalex.org/W2081562328", "https://openalex.org/W2082081125", "https://openalex.org/W2103614420", "https://openalex.org/W2117706739", "https://openalex.org/W2123733695", "https://openalex.org/W2126902408", "https://openalex.org/W2127559745", "https://openalex.org/W2133941557", "https://openalex.org/W2138973222", "https://openalex.org/W2139709933", "https://openalex.org/W2142231247", "https://openalex.org/W2145862305", "https://openalex.org/W2146497894", "https://openalex.org/W2151456308", "https://openalex.org/W2155289042", "https://openalex.org/W2156382101", "https://openalex.org/W2160861680", "https://openalex.org/W2166307050", "https://openalex.org/W2173562516", "https://openalex.org/W2176432844", "https://openalex.org/W2178470810", "https://openalex.org/W2180682969", "https://openalex.org/W2200121095", "https://openalex.org/W2261059368", "https://openalex.org/W2261167432", "https://openalex.org/W2278948991", "https://openalex.org/W2290682182", "https://openalex.org/W2297019642", "https://openalex.org/W2347192404", "https://openalex.org/W2405135662", "https://openalex.org/W2438450043", "https://openalex.org/W2485245346", "https://openalex.org/W2531168480", "https://openalex.org/W2558892021", "https://openalex.org/W2568420287", "https://openalex.org/W2584743460", "https://openalex.org/W2592712793", "https://openalex.org/W2725897987", "https://openalex.org/W2766727660", "https://openalex.org/W2781971575", "https://openalex.org/W2800354856", "https://openalex.org/W2805112544", "https://openalex.org/W2807393992", "https://openalex.org/W2883890464", "https://openalex.org/W2903435086", "https://openalex.org/W2911964244", "https://openalex.org/W2955497201", "https://openalex.org/W4285719527", "https://openalex.org/W561088580" ], "referenced_works_count": 86, "related_works": [ "https://openalex.org/W4390608645", "https://openalex.org/W4255224757", "https://openalex.org/W4247566972", "https://openalex.org/W4244478748", "https://openalex.org/W4233347783", "https://openalex.org/W4206777497", "https://openalex.org/W3090563135", "https://openalex.org/W2960264696", "https://openalex.org/W2910064364", "https://openalex.org/W2497432351" ], "sustainable_development_goals": [], "title": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "score": 0.9903, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13058", "display_name": "Land-Use Suitability Assessment Using GIS", "score": 0.9861, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-09T20:40:48.471469", "versions": [], "qid": null }
}