Item talk:Q256362
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70206881", "url": "https://pubs.usgs.gov/publication/70206881" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70206881 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1080/15481603.2019.1690780", "url": "https://doi.org/10.1080/15481603.2019.1690780" } ], "journal": { "@type": "Periodical", "name": "GIScience and Remote Sensing", "volumeNumber": "57", "issueNumber": "3" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "GIScience and Remote Sensing" } ], "datePublished": "2020", "dateModified": "2020-04-06", "abstract": "The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization\u2019s (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (>250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, ten time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the 3 time-periods over 12 months (monsoon: Julian days 151-300; winter: Julian days 301-365 plus 1-60; and summer: Julian days 61-150), taking the every 8-day data from Landsat-8 and 7 for the years 2013-2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the 5 agro-ecological zones (AEZ\u2019s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N=2179) in 5 AEZs. Classification was performed on GEE for each of the 5 AEZs using well-established knowledge-based and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N=1185). The survey showed that the South Asia cropland product had a producer\u2019s accuracy of 89.9% (errors of omissions of 10.1%), user\u2019s accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/", "description": "21 p.", "publisher": { "@type": "Organization", "name": "Taylor & Francis" }, "author": [ { "@type": "Person", "name": "Thenkabail, Prasad", "givenName": "Prasad", "familyName": "Thenkabail", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2182-8822", "url": "https://orcid.org/0000-0002-2182-8822" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Murali Krishna Gumma,", "familyName": "Murali Krishna Gumma", "affiliation": [ { "@type": "Organization", "name": "International Crops Research Institute for the Semi Arid Tropics (ICRISAT)" } ] }, { "@type": "Person", "name": "Pardhasaradhi Teluguntla", "familyName": "Pardhasaradhi Teluguntla", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8060-9841", "url": "https://orcid.org/0000-0001-8060-9841" }, "affiliation": [ { "@type": "Organization", "name": "Bay Area Environmental Research Institute at USGS" } ] }, { "@type": "Person", "name": "Oliphant, Adam aoliphant@usgs.gov", "givenName": "Adam", "familyName": "Oliphant", "email": "aoliphant@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8622-7932", "url": "https://orcid.org/0000-0001-8622-7932" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] } ], "funder": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "India", "url": "https://geonames.org/4050654" }, { "@type": "Place", "additionalType": "country", "name": "Pakistan", "url": "https://geonames.org/4138455" }, { "@type": "Place", "additionalType": "country", "name": "Bangladesh", "url": "https://geonames.org/4138497" }, { "@type": "Place", "additionalType": "country", "name": "Nepal", "url": "https://geonames.org/5543852" }, { "@type": "Place", "additionalType": "country", "name": "Sri Lanka", "url": "https://geonames.org/4138484" }, { "@type": "Place", "additionalType": "country", "name": "Bhutan", "url": "https://geonames.org/5332143" } ] }, "OpenAlex": { "_id": "https://openalex.org/W2989767070", "abstract_inverted_index": { "The": [ 0, 44, 245, 277, 312, 338, 368 ], "South": [ 1, 96, 211, 282, 335, 352, 364 ], "Asia": [ 2, 97, 212, 283, 353, 365 ], "(India,": [ 3 ], "Pakistan,": [ 4 ], "Bangladesh,": [ 5 ], "Nepal,": [ 6 ], "Sri": [ 7 ], "Lanka": [ 8 ], "and": [ 9, 34, 57, 107, 164, 175, 213, 221, 260, 306, 314, 359, 380, 384 ], "Bhutan)": [ 10 ], "has": [ 11 ], "a": [ 12, 84, 182, 215, 287 ], "staggering": [ 13 ], "900": [ 14 ], "million": [ 15 ], "people": [ 16 ], "(~43%": [ 17 ], "of": [ 18, 54, 78, 95, 125, 145, 154, 184, 204, 210, 253, 290, 293, 295, 299, 302, 304, 310, 333, 363, 377 ], "the": [ 19, 38, 75, 99, 113, 123, 146, 155, 169, 178, 205, 225, 254, 264, 281, 330, 334, 355, 360, 385 ], "population)": [ 20 ], "who": [ 21 ], "face": [ 22 ], "food": [ 23, 27 ], "insecurity": [ 24, 28 ], "or": [ 25, 89, 354 ], "severe": [ 26 ], "as": [ 29 ], "per": [ 30 ], "United": [ 31, 386 ], "Nations,": [ 32 ], "Food": [ 33, 39 ], "Agriculture": [ 35 ], "Organization\u2019s": [ 36 ], "(FAO)": [ 37 ], "Insecurity": [ 40 ], "Experience": [ 41 ], "Scale": [ 42 ], "(FIES).": [ 43 ], "existing": [ 45 ], "coarse-resolution": [ 46 ], "(\u2265250-m)": [ 47 ], "cropland": [ 48, 68, 92, 284, 321, 361 ], "maps": [ 49 ], "lack": [ 50 ], "precision": [ 51 ], "in": [ 52, 65, 67, 242, 351 ], "geo-location": [ 53 ], "individual": [ 55 ], "farms": [ 56 ], "have": [ 58 ], "low": [ 59 ], "map": [ 60 ], "accuracies.": [ 61 ], "This": [ 62, 195 ], "also": [ 63 ], "results": [ 64 ], "uncertainties": [ 66 ], "areas": [ 69, 317 ], "calculated": [ 70 ], "from": [ 71, 173, 319, 367 ], "such": [ 72 ], "products.": [ 73 ], "Thereby,": [ 74 ], "overarching": [ 76 ], "goal": [ 77 ], "this": [ 79, 320 ], "study": [ 80 ], "was": [ 81, 200, 247 ], "to": [ 82, 348 ], "develop": [ 83 ], "high": [ 85 ], "spatial": [ 86 ], "resolution": [ 87 ], "(30-m": [ 88 ], "better)": [ 90 ], "baseline": [ 91, 216 ], "extent": [ 93, 322 ], "product": [ 94, 285, 323 ], "for": [ 98, 143, 177, 181, 202, 218, 224, 251 ], "year": [ 100 ], "2015": [ 101 ], "using": [ 102, 232, 257, 270 ], "Landsat": [ 103, 129 ], "satellite": [ 104 ], "time-series": [ 105 ], "big-data": [ 106 ], "machine": [ 108 ], "learning": [ 109 ], "algorithms": [ 110 ], "(MLAs)": [ 111 ], "on": [ 112, 249, 263 ], "Google": [ 114 ], "Earth": [ 115 ], "Engine": [ 116 ], "(GEE)": [ 117 ], "cloud": [ 118 ], "computing": [ 119 ], "platform.": [ 120 ], "To": [ 121 ], "eliminate": [ 122 ], "impact": [ 124 ], "clouds,": [ 126 ], "10": [ 127 ], "time-composited": [ 128 ], "bands": [ 130 ], "(blue,": [ 131 ], "green,": [ 132 ], "red,": [ 133 ], "NIR,": [ 134 ], "SWIR1,": [ 135 ], "SWIR2,": [ 136 ], "Thermal,": [ 137 ], "EVI,": [ 138 ], "NDVI,": [ 139 ], "NDWI)": [ 140 ], "were": [ 141, 230, 268 ], "derived": [ 142, 192 ], "each": [ 144, 203, 252 ], "three": [ 147 ], "time-periods": [ 148 ], "over": [ 149 ], "12": [ 150 ], "months": [ 151 ], "(monsoon:": [ 152 ], "Days": [ 153 ], "Year": [ 156 ], "(DOY)": [ 157 ], "151\u2013300;": [ 158 ], "winter:": [ 159 ], "DOY": [ 160, 166 ], "301\u2013365": [ 161 ], "plus": [ 162, 186 ], "1\u201360;": [ 163 ], "summer:": [ 165 ], "61\u2013150),": [ 167 ], "taking": [ 168 ], "every": [ 170 ], "8-day": [ 171 ], "data": [ 172, 217, 238, 273 ], "Landsat-8": [ 174 ], "7": [ 176 ], "years": [ 179 ], "2013\u20132015,": [ 180 ], "total": [ 183 ], "30-bands": [ 185 ], "global": [ 187 ], "digital": [ 188 ], "elevation": [ 189 ], "model": [ 190 ], "(GDEM)": [ 191 ], "slope": [ 193 ], "band.": [ 194 ], "31-band": [ 196 ], "mega-file": [ 197 ], "big": [ 198 ], "data-cube": [ 199 ], "composed": [ 201 ], "five": [ 206, 243, 255 ], "agro-ecological": [ 207 ], "zones": [ 208 ], "(AEZ\u2019s)": [ 209 ], "formed": [ 214 ], "image": [ 219 ], "classification": [ 220, 246 ], "analysis.": [ 222 ], "Knowledge-base": [ 223 ], "Random": [ 226 ], "Forest": [ 227 ], "(RF)": [ 228 ], "MLAs": [ 229, 262 ], "developed": [ 231 ], "spatially": [ 233 ], "well": [ 234 ], "spread-out": [ 235 ], "reference": [ 236 ], "training": [ 237 ], "(N": [ 239, 274 ], "=": [ 240, 275 ], "2179)": [ 241 ], "AEZs.": [ 244 ], "performed": [ 248 ], "GEE": [ 250 ], "AEZs": [ 256 ], "well-established": [ 258 ], "knowledge-base": [ 259 ], "RF": [ 261 ], "cloud.": [ 265 ], "Map": [ 266 ], "accuracies": [ 267 ], "measured": [ 269 ], "independent": [ 271 ], "validation": [ 272 ], "1185).": [ 276 ], "survey": [ 278 ], "showed": [ 279 ], "that": [ 280 ], "had": [ 286 ], "producer\u2019s": [ 288 ], "accuracy": [ 289, 298, 309 ], "89.9%": [ 291 ], "(errors": [ 292, 301 ], "omissions": [ 294 ], "10.1%),": [ 296 ], "user\u2019s": [ 297 ], "95.3%": [ 300 ], "commission": [ 303 ], "4.7%)": [ 305 ], "an": [ 307 ], "overall": [ 308 ], "88.7%.": [ 311 ], "National": [ 313, 331, 378 ], "sub-national": [ 315 ], "(districts)": [ 316 ], "computed": [ 318 ], "explained": [ 324 ], "80-96%": [ 325 ], "variability": [ 326 ], "when": [ 327 ], "compared": [ 328 ], "with": [ 329 ], "statistics": [ 332 ], "Asian": [ 336 ], "Countries.": [ 337 ], "full-resolution": [ 339 ], "imagery": [ 340 ], "can": [ 341 ], "be": [ 342 ], "viewed": [ 343 ], "at": [ 344, 357 ], "full-resolution,": [ 345 ], "by": [ 346 ], "zooming-in": [ 347 ], "any": [ 349 ], "location": [ 350 ], "world,": [ 356 ], "www.croplands.org": [ 358 ], "products": [ 362 ], "downloaded": [ 366 ], "Land": [ 369 ], "Processes": [ 370 ], "Distributed": [ 371 ], "Active": [ 372 ], "Archive": [ 373 ], "Center": [ 374 ], "(LP": [ 375 ], "DAAC)": [ 376 ], "Aeronautics": [ 379 ], "Space": [ 381 ], "Administration": [ 382 ], "(NASA)": [ 383 ], "States": [ 387 ], "Geological": [ 388 ], "Survey": [ 389 ], "(USGS):": [ 390 ], "https://lpdaac.usgs.gov/products/gfsad30saafgircev001/.": [ 391 ] }, "apc_list": { "value": 1880, "currency": "GBP", "value_usd": 2390, "provenance": "doaj" }, "apc_paid": { "value": 1880, "currency": "GBP", "value_usd": 2390, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5084676540", "display_name": "Murali Krishna Gumma", "orcid": "https://orcid.org/0000-0002-3760-3935" }, "institutions": [ { "id": "https://openalex.org/I4210163774", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "ror": "https://ror.org/0541a3n79", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] } ], "countries": [ "IN" ], "is_corresponding": true, "raw_author_name": "Murali Krishna Gumma", "raw_affiliation_strings": [ "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India" ], "affiliations": [ { "raw_affiliation_string": "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India", "institution_ids": [ "https://openalex.org/I4210163774" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5039070473", "display_name": "Prasad S. Thenkabail", "orcid": "https://orcid.org/0000-0002-2182-8822" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Prasad S. Thenkabail", "raw_affiliation_strings": [ "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA" ], "affiliations": [ { "raw_affiliation_string": "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5014096050", "display_name": "Pardhasaradhi Teluguntla", "orcid": "https://orcid.org/0000-0001-8060-9841" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, { "id": "https://openalex.org/I2800713631", "display_name": "NASA Research Park", "ror": "https://ror.org/04hccab49", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1280536761", "https://openalex.org/I2800713631", "https://openalex.org/I4210124779" ] }, { "id": "https://openalex.org/I4210109616", "display_name": "Bay Area Environmental Research Institute", "ror": "https://ror.org/024tt5x58", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Pardhasaradhi G. Teluguntla", "raw_affiliation_strings": [ "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA, USA", "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA" ], "affiliations": [ { "raw_affiliation_string": "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] }, { "raw_affiliation_string": "Bay Area Environmental Research Institute (BAERI), NASA Research Park, Moffett Field, CA, USA", "institution_ids": [ "https://openalex.org/I2800713631", "https://openalex.org/I4210109616" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5044607141", "display_name": "Adam Oliphant", "orcid": "https://orcid.org/0000-0001-8622-7932" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Adam Oliphant", "raw_affiliation_strings": [ "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA" ], "affiliations": [ { "raw_affiliation_string": "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5002534050", "display_name": "Jun Xiong", "orcid": "https://orcid.org/0000-0002-2320-0780" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jun Xiong", "raw_affiliation_strings": [ "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA" ], "affiliations": [ { "raw_affiliation_string": "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5102850083", "display_name": "Chandra Giri", "orcid": "https://orcid.org/0000-0003-1938-4131" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Chandra Giri", "raw_affiliation_strings": [ "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA" ], "affiliations": [ { "raw_affiliation_string": "Western Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5033840136", "display_name": "Vineetha Pyla", "orcid": "https://orcid.org/0000-0002-9436-0394" }, "institutions": [ { "id": "https://openalex.org/I10874241", "display_name": "Jawaharlal Nehru Technological University, Hyderabad", "ror": "https://ror.org/002tchr49", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I10874241" ] } ], "countries": [ "IN" ], "is_corresponding": false, "raw_author_name": "Vineetha Pyla", "raw_affiliation_strings": [ "Jawaharlal Nehru Technological University (JNTU), Hyderabad, India" ], "affiliations": [ { "raw_affiliation_string": "Jawaharlal Nehru Technological University (JNTU), Hyderabad, India", "institution_ids": [ "https://openalex.org/I10874241" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5062039230", "display_name": "Sreenath Dixit", "orcid": "https://orcid.org/0000-0002-3607-8729" }, "institutions": [ { "id": "https://openalex.org/I4210163774", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "ror": "https://ror.org/0541a3n79", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] } ], "countries": [ "IN" ], "is_corresponding": false, "raw_author_name": "Sreenath Dixit", "raw_affiliation_strings": [ "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India" ], "affiliations": [ { "raw_affiliation_string": "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India", "institution_ids": [ "https://openalex.org/I4210163774" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5007823414", "display_name": "Anthony Whitbread", "orcid": "https://orcid.org/0000-0003-4840-7670" }, "institutions": [ { "id": "https://openalex.org/I4210163774", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "ror": "https://ror.org/0541a3n79", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] } ], "countries": [ "IN" ], "is_corresponding": false, "raw_author_name": "Anthony M Whitbread", "raw_affiliation_strings": [ "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India" ], "affiliations": [ { "raw_affiliation_string": "RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India", "institution_ids": [ "https://openalex.org/I4210163774" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1080/15481603.2019.1690780", "pdf_url": "https://www.tandfonline.com/doi/pdf/10.1080/15481603.2019.1690780?needAccess=true", "source": { "id": "https://openalex.org/S7804318", "display_name": "GIScience & Remote Sensing", "issn_l": "1548-1603", "issn": [ "1548-1603", "1943-7226" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "57", "issue": "3", "first_page": "302", "last_page": "322" }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2989767070", "cited_by_count": 107, "cited_by_percentile_year": { "min": 98, "max": 99 }, "concepts": [ { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.5850136, "qid": "Q158983" }, { "id": "https://openalex.org/c79974875", "wikidata": "https://www.wikidata.org/wiki/Q483639", "display_name": "Cloud computing", "level": 2, "score": 0.49176314, "qid": null }, { "id": "https://openalex.org/c19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 0.48394588, "qid": null }, { "id": "https://openalex.org/c39399123", "wikidata": "https://www.wikidata.org/wiki/Q1348989", "display_name": "Earth observation", "level": 3, "score": 0.48283276, "qid": null }, { "id": "https://openalex.org/c2908647359", "wikidata": "https://www.wikidata.org/wiki/Q2625603", "display_name": "Population", "level": 2, "score": 0.45506072, "qid": null }, { "id": "https://openalex.org/c118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 0.44528455, "qid": "Q166198" }, { "id": "https://openalex.org/c11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 0.42575282, "qid": "Q226190" }, { "id": "https://openalex.org/c2778755073", "wikidata": "https://www.wikidata.org/wiki/Q10858537", "display_name": "Scale (ratio)", "level": 2, "score": 0.41064295, "qid": null }, { "id": "https://openalex.org/c62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.40758276, "qid": "Q158877" }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.37331206, "qid": "Q166085" }, { "id": "https://openalex.org/c153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 0.32952613, "qid": "Q159006" }, { "id": "https://openalex.org/c58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 0.27894413, "qid": "Q158966" }, { "id": "https://openalex.org/c33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.20019037, "qid": "Q161189" }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.16233167, "qid": "Q158969" }, { "id": "https://openalex.org/c127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.101810396, "qid": "Q158977" }, { "id": "https://openalex.org/c149923435", "wikidata": "https://www.wikidata.org/wiki/Q37732", "display_name": "Demography", "level": 1, "score": 0.097299576, "qid": "Q166262" }, { "id": "https://openalex.org/c166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 0.0, "qid": "Q226195" }, { "id": "https://openalex.org/c146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 0.0, "qid": "Q166129" }, { "id": "https://openalex.org/c111919701", "wikidata": "https://www.wikidata.org/wiki/Q9135", "display_name": "Operating system", "level": 1, "score": 0.0, "qid": "Q226285" }, { "id": "https://openalex.org/c144024400", "wikidata": "https://www.wikidata.org/wiki/Q21201", "display_name": "Sociology", "level": 0, "score": 0.0, "qid": "Q226182" } ], "corresponding_author_ids": [ "https://openalex.org/A5084676540", "https://openalex.org/A5039070473" ], "corresponding_institution_ids": [ "https://openalex.org/I4210163774", "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ], "countries_distinct_count": 2, "counts_by_year": [ { "year": 2024, "cited_by_count": 11 }, { "year": 2023, "cited_by_count": 33 }, { "year": 2022, "cited_by_count": 28 }, { "year": 2021, "cited_by_count": 25 }, { "year": 2020, "cited_by_count": 9 } ], "created_date": "2019-12-05", "datasets": [], "display_name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", "doi": "https://doi.org/10.1080/15481603.2019.1690780", "fwci": 8.502, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W2989767070", "ids": { "openalex": "https://openalex.org/W2989767070", "doi": "https://doi.org/10.1080/15481603.2019.1690780", "mag": "2989767070" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 6, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/earth-observation", "display_name": "Earth observation", "score": 0.48283276 }, { "id": "https://openalex.org/keywords/biomass-estimation", "display_name": "Biomass Estimation", "score": 0.479953 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1080/15481603.2019.1690780", "pdf_url": "https://www.tandfonline.com/doi/pdf/10.1080/15481603.2019.1690780?needAccess=true", "source": { "id": "https://openalex.org/S7804318", "display_name": "GIScience & Remote Sensing", "issn_l": "1548-1603", "issn": [ "1548-1603", "1943-7226" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": true, "landing_page_url": "http://oar.icrisat.org/11361/1/Agricultural%20cropland%20extent%20and%20areas%20of%20South%20Asia%20derived%20using%20Landsat%20satellite%2030%20m%20time%20series%20big%20data%20using%20random%20forest%20machine%20learning.pdf", "pdf_url": "http://oar.icrisat.org/11361/1/Agricultural%20cropland%20extent%20and%20areas%20of%20South%20Asia%20derived%20using%20Landsat%20satellite%2030%20m%20time%20series%20big%20data%20using%20random%20forest%20machine%20learning.pdf", "source": { "id": "https://openalex.org/S4306401867", "display_name": "Open Access Repository of ICRISAT (International Crops Research Institute for the Semi-Arid Tropics)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I4210163774", "host_organization_name": "International Crops Research Institute for the Semi-Arid Tropics", "host_organization_lineage": [ "https://openalex.org/I4210163774" ], "host_organization_lineage_names": [ "International Crops Research Institute for the Semi-Arid Tropics" ], "type": "repository" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "acceptedVersion", "is_accepted": true, "is_published": false } ], "locations_count": 2, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2989767070/ngrams", "open_access": { "is_oa": true, "oa_status": "hybrid", "oa_url": "https://www.tandfonline.com/doi/pdf/10.1080/15481603.2019.1690780?needAccess=true", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1080/15481603.2019.1690780", "pdf_url": "https://www.tandfonline.com/doi/pdf/10.1080/15481603.2019.1690780?needAccess=true", "source": { "id": "https://openalex.org/S7804318", "display_name": "GIScience & Remote Sensing", "issn_l": "1548-1603", "issn": [ "1548-1603", "1943-7226" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2019-11-22", "publication_year": 2019, "referenced_works": [ "https://openalex.org/W1970687962", "https://openalex.org/W1971240982", "https://openalex.org/W1971364019", "https://openalex.org/W1990269578", "https://openalex.org/W1993438172", "https://openalex.org/W1994050572", "https://openalex.org/W1999098971", "https://openalex.org/W1999843495", "https://openalex.org/W2000047929", "https://openalex.org/W2004421470", "https://openalex.org/W2012950829", "https://openalex.org/W2017657457", "https://openalex.org/W2025745000", "https://openalex.org/W2027475314", "https://openalex.org/W2033848829", "https://openalex.org/W2035549557", "https://openalex.org/W2037455286", "https://openalex.org/W2055248879", "https://openalex.org/W2056141749", "https://openalex.org/W2058208710", "https://openalex.org/W2058723831", "https://openalex.org/W2060680089", "https://openalex.org/W2072305677", "https://openalex.org/W2074288000", "https://openalex.org/W2076186394", "https://openalex.org/W2082081125", "https://openalex.org/W2082573650", "https://openalex.org/W2082874195", "https://openalex.org/W2084744129", "https://openalex.org/W2111197480", "https://openalex.org/W2117268220", "https://openalex.org/W2132424470", "https://openalex.org/W2133941557", "https://openalex.org/W2142231247", "https://openalex.org/W2146497894", "https://openalex.org/W2170804038", "https://openalex.org/W2171395380", "https://openalex.org/W2178470810", "https://openalex.org/W2182845082", "https://openalex.org/W2210676602", "https://openalex.org/W2218047931", "https://openalex.org/W2261059368", "https://openalex.org/W2261167432", "https://openalex.org/W2262752710", "https://openalex.org/W2273343461", "https://openalex.org/W2297019642", "https://openalex.org/W2347192404", "https://openalex.org/W2519741687", "https://openalex.org/W2553266079", "https://openalex.org/W2568420287", "https://openalex.org/W2575963352", "https://openalex.org/W2592712793", "https://openalex.org/W2611718212", "https://openalex.org/W2725897987", "https://openalex.org/W2763734094", "https://openalex.org/W2766727660", "https://openalex.org/W2788145508", "https://openalex.org/W2807393992", "https://openalex.org/W2885406917", "https://openalex.org/W2903250724", "https://openalex.org/W2911964244", "https://openalex.org/W2946293204", "https://openalex.org/W4239787096", "https://openalex.org/W4245539475" ], "referenced_works_count": 64, "related_works": [ "https://openalex.org/W4244478748", "https://openalex.org/W4223488648", "https://openalex.org/W4205786897", "https://openalex.org/W3150465815", "https://openalex.org/W3020139090", "https://openalex.org/W2251605416", "https://openalex.org/W2134969820", "https://openalex.org/W2070395303", "https://openalex.org/W1997222214", "https://openalex.org/W1679591466" ], "sustainable_development_goals": [ { "score": 0.77, "display_name": "Zero hunger", "id": "https://metadata.un.org/sdg/2" } ], "title": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "score": 0.9955, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "score": 0.9794, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-10T23:16:20.493681", "versions": [], "qid": null }
}