Item talk:Q254552

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "A machine learning approach to developing ground motion models from simulated ground motions",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70222500",
       "url": "https://pubs.usgs.gov/publication/70222500"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70222500
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1029/2019GL086690",
       "url": "https://doi.org/10.1029/2019GL086690"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Geophysical Research Letters",
     "volumeNumber": "47",
     "issueNumber": "6"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Geophysical Research Letters"
     }
   ],
   "datePublished": "2020",
   "dateModified": "2021-07-30",
   "abstract": "We use a machine learning approach to build a ground motion model (GMM) from a synthetic database of ground motions extracted from the Southern California CyberShake study. An artificial neural network is used to find the optimal weights that best fit the target data (without overfitting), with input parameters chosen to match that of state-of-the-art GMMs. We validate our synthetic-based GMM with empirically based GMMs derived from the globally based Next Generation Attenuation West2 data set, finding near-zero median residuals and similar amplitude and trends (with period) of total variability. Additionally, we find that the artificial neural network GMM has similar bias and variability to empirical GMMs from records of the recent\u00a0\u00a0Ridgecrest event, which neither GMM has included in its formulation. As simulations continue to better model broadband ground motions, machine learning provides a way to utilize the vast amount of synthetically generated data and guide future parameterization of GMMs.",
   "description": "e2019GL086690, 9 p.",
   "publisher": {
     "@type": "Organization",
     "name": "American Geophysical Union"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Withers, Kyle",
       "givenName": "Kyle",
       "familyName": "Withers",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0001-7863-3930",
         "url": "https://orcid.org/0000-0001-7863-3930"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Geologic Hazards Science Center",
           "url": "https://www.usgs.gov/centers/geologic-hazards-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Moschetti, Morgan P. mmoschetti@usgs.gov",
       "givenName": "Morgan P.",
       "familyName": "Moschetti",
       "email": "mmoschetti@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0001-7261-0295",
         "url": "https://orcid.org/0000-0001-7261-0295"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Geologic Hazards Science Center",
           "url": "https://www.usgs.gov/centers/geologic-hazards-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Thompson, Eric M. emthompson@usgs.gov",
       "givenName": "Eric M.",
       "familyName": "Thompson",
       "email": "emthompson@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-6943-4806",
         "url": "https://orcid.org/0000-0002-6943-4806"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Geologic Hazards Science Center",
           "url": "https://www.usgs.gov/centers/geologic-hazards-science-center"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Geologic Hazards Science Center",
       "url": "https://www.usgs.gov/centers/geologic-hazards-science-center"
     }
   ],
   "spatialCoverage": [
     {
       "@type": "Place",
       "additionalType": "country",
       "name": "United States",
       "url": "https://geonames.org/4074035"
     },
     {
       "@type": "Place",
       "additionalType": "state",
       "name": "California"
     },
     {
       "@type": "Place",
       "geo": [
         {
           "@type": "GeoShape",
           "additionalProperty": {
             "@type": "PropertyValue",
             "name": "GeoJSON",
             "value": {
               "type": "FeatureCollection",
               "features": [
                 {
                   "type": "Feature",
                   "properties": {},
                   "geometry": {
                     "type": "Polygon",
                     "coordinates": [
                       [
                         [
                           -119.091796875,
                           33.815666308702774
                         ],
                         [
                           -117.31201171875001,
                           32.34284135639302
                         ],
                         [
                           -114.345703125,
                           32.69486597787505
                         ],
                         [
                           -113.7744140625,
                           34.45221847282654
                         ],
                         [
                           -119.091796875,
                           34.45221847282654
                         ],
                         [
                           -119.091796875,
                           33.815666308702774
                         ]
                       ]
                     ]
                   }
                 }
               ]
             }
           }
         },
         {
           "@type": "GeoCoordinates",
           "latitude": 33.56614352577442,
           "longitude": -116.3850423825764
         }
       ]
     }
   ]
 }

}