Item talk:Q254352
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Using boosted regression tree models to predict salinity in Mississippi embayment aquifers, central United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70212635", "url": "https://pubs.usgs.gov/publication/70212635" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70212635 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1111/1752-1688.12879", "url": "https://doi.org/10.1111/1752-1688.12879" } ], "journal": { "@type": "Periodical", "name": "Journal of American Water Resources Association", "volumeNumber": "56", "issueNumber": "6" }, "bookEdition": "1010", "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Journal of American Water Resources Association" } ], "datePublished": "2020", "dateModified": "2023-11-08", "abstract": "High salinity limits groundwater use in parts of the Mississippi embayment. Machine learning was used to create spatially continuous and three\u2010dimensional predictions of salinity across drinking\u2010water aquifers in the embayment. Boosted regression tree (BRT) models, a type of machine learning, were used to predict specific conductance (SC) and chloride (Cl), and total dissolved solids (TDS) was calculated from a correlation with SC. Explanatory variables for BRT models included well location and construction, surficial variables (e.g., soils and land use), and variables extracted from a groundwater\u2010flow model, including simulated groundwater ages. BRT model fits (r2) were 0.74 (SC and Cl) and 0.62 (TDS). BRT models provided spatially continuous salinity predictions across surficial and deeper aquifers where discrete water\u2010quality samples were missing. Uncertainty was smaller where salinity was lower, and models tended to underpredict in areas of highest salinity. Despite this, BRT models were able to capture areas of documented high salinity that exceed the TDS secondary maximum contaminant level for drinking water of 500\u00a0mg/L. Variables that served as surrogates for position along groundwater flowpaths were the most important predictors, indicating that much of the control on dissolved solids is related to rock\u2010water interaction as residence time increases. BRT models additionally support hypotheses of both surficial and deep sources of salinity.", "description": "20 p.", "publisher": { "@type": "Organization", "name": "Wiley" }, "author": [ { "@type": "Person", "name": "Knierim, Katherine J. kknierim@usgs.gov", "givenName": "Katherine J.", "familyName": "Knierim", "email": "kknierim@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5361-4132", "url": "https://orcid.org/0000-0002-5361-4132" }, "affiliation": [ { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" } ] }, { "@type": "Person", "name": "Kingsbury, James A. jakingsb@usgs.gov", "givenName": "James A.", "familyName": "Kingsbury", "email": "jakingsb@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-4985-275X", "url": "https://orcid.org/0000-0003-4985-275X" }, "affiliation": [ { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" }, { "@type": "Organization", "name": "WMA - Earth System Processes Division", "url": "https://www.usgs.gov/mission-areas/water-resources" }, { "@type": "Organization", "name": "Tennessee Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" }, { "@type": "Organization", "name": "National Water Quality Assessment Program", "url": "https://www.usgs.gov/programs/national-water-quality-program" } ] }, { "@type": "Person", "name": "Haugh, Connor J.", "givenName": "Connor J.", "familyName": "Haugh", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5204-8271", "url": "https://orcid.org/0000-0002-5204-8271" }, "affiliation": [ { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" } ] }, { "@type": "Person", "name": "Ransom, Katherine Marie", "givenName": "Katherine Marie", "familyName": "Ransom", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-6195-7699", "url": "https://orcid.org/0000-0001-6195-7699" }, "affiliation": [ { "@type": "Organization", "name": "California Water Science Center", "url": "https://www.usgs.gov/centers/california-water-science-center" } ] } ], "funder": [ { "@type": "Organization", "name": "California Water Science Center", "url": "https://www.usgs.gov/centers/california-water-science-center" }, { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" }, { "@type": "Organization", "name": "Advanced Research Computing (ARC)", "url": "https://www.usgs.gov/ecosystems/land-change-science-program" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "state", "name": "Alabama" }, { "@type": "Place", "additionalType": "state", "name": "Arkansas" }, { "@type": "Place", "additionalType": "state", "name": "Kentucky" }, { "@type": "Place", "additionalType": "state", "name": "Louisiana" }, { "@type": "Place", "additionalType": "state", "name": "Mississippi" }, { "@type": "Place", "additionalType": "state", "name": "Missouri" }, { "@type": "Place", "additionalType": "state", "name": "Tennessee" }, { "@type": "Place", "additionalType": "unknown", "name": "Mississippi Embayment" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -89.3408203125, 36.98500309285596 ], [ -90.52734374999999, 36.73888412439431 ], [ -92.3291015625, 34.66935854524543 ], [ -93.779296875, 32.32427558887655 ], [ -92.548828125, 31.240985378021307 ], [ -90.52734374999999, 32.509761735919426 ], [ -88.857421875, 32.10118973232094 ], [ -87.2314453125, 30.789036751261136 ], [ -86.923828125, 31.690781806136822 ], [ -87.275390625, 32.879587173066305 ], [ -88.9453125, 33.87041555094183 ], [ -89.2529296875, 35.17380831799959 ], [ -88.6376953125, 36.59788913307022 ], [ -88.76953125, 36.914764288955936 ], [ -89.3408203125, 36.98500309285596 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 33.71767202650692, "longitude": -90.38265255216065 } ] } ] }, "OpenAlex": { "_id": "https://openalex.org/w3086451827", "abstract_inverted_index": { "Abstract": [ 0 ], "High": [ 1 ], "salinity": [ 2, 24, 111, 128, 153 ], "limits": [ 3 ], "groundwater": [ 4, 89, 176 ], "use": [ 5 ], "in": [ 6, 28, 136 ], "parts": [ 7 ], "of": [ 8, 23, 38, 138, 150, 165, 186, 206, 212 ], "the": [ 9, 29, 156, 179, 187 ], "Mississippi": [ 10 ], "embayment.": [ 11, 30 ], "Machine": [ 12 ], "learning": [ 13 ], "was": [ 14, 56, 125, 129 ], "used": [ 15, 42 ], "to": [ 16, 43, 134, 147, 194 ], "create": [ 17 ], "spatially": [ 18, 109 ], "continuous": [ 19, 110 ], "and": [ 20, 48, 51, 71, 77, 80, 101, 103, 115, 131, 209 ], "three\u2010dimensional": [ 21 ], "predictions": [ 22, 112 ], "across": [ 25, 113 ], "drinking\u2010water": [ 26 ], "aquifers": [ 27, 117 ], "Boosted": [ 31 ], "regression": [ 32 ], "tree": [ 33 ], "(BRT)": [ 34 ], "models,": [ 35 ], "a": [ 36, 59, 84 ], "type": [ 37 ], "machine": [ 39 ], "learning,": [ 40 ], "were": [ 41, 98, 122, 145, 178 ], "predict": [ 44 ], "specific": [ 45 ], "conductance": [ 46 ], "(SC)": [ 47 ], "chloride": [ 49 ], "(Cl),": [ 50 ], "total": [ 52 ], "dissolved": [ 53, 190 ], "solids": [ 54, 191 ], "(TDS)": [ 55 ], "calculated": [ 57 ], "from": [ 58, 83 ], "correlation": [ 60 ], "with": [ 61 ], "SC.": [ 62 ], "Explanatory": [ 63 ], "variables": [ 64, 74, 81 ], "for": [ 65, 162, 173 ], "BRT": [ 66, 91, 106, 143, 201 ], "models": [ 67, 107, 132, 144, 202 ], "included": [ 68 ], "well": [ 69 ], "location": [ 70 ], "construction,": [ 72 ], "surficial": [ 73, 114, 208 ], "(e.g.,": [ 75 ], "soils": [ 76 ], "land": [ 78 ], "use),": [ 79 ], "extracted": [ 82 ], "groundwater\u2010flow": [ 85 ], "model,": [ 86 ], "including": [ 87 ], "simulated": [ 88 ], "ages.": [ 90 ], "model": [ 92 ], "fits": [ 93 ], "(": [ 94 ], "r": [ 95 ], "2": [ 96 ], ")": [ 97 ], "0.74": [ 99 ], "(SC": [ 100 ], "Cl)": [ 102 ], "0.62": [ 104 ], "(TDS).": [ 105 ], "provided": [ 108 ], "deeper": [ 116 ], "where": [ 118, 127 ], "discrete": [ 119 ], "water\u2010quality": [ 120 ], "samples": [ 121 ], "missing.": [ 123 ], "Uncertainty": [ 124 ], "smaller": [ 126 ], "lower,": [ 130 ], "tended": [ 133 ], "underpredict": [ 135 ], "areas": [ 137, 149 ], "highest": [ 139 ], "salinity.": [ 140, 213 ], "Despite": [ 141 ], "this,": [ 142 ], "able": [ 146 ], "capture": [ 148 ], "documented": [ 151 ], "high": [ 152 ], "that": [ 154, 169, 184 ], "exceed": [ 155 ], "TDS": [ 157 ], "secondary": [ 158 ], "maximum": [ 159 ], "contaminant": [ 160 ], "level": [ 161 ], "drinking": [ 163 ], "water": [ 164 ], "500": [ 166 ], "mg/L.": [ 167 ], "Variables": [ 168 ], "served": [ 170 ], "as": [ 171, 197 ], "surrogates": [ 172 ], "position": [ 174 ], "along": [ 175 ], "flowpaths": [ 177 ], "most": [ 180 ], "important": [ 181 ], "predictors,": [ 182 ], "indicating": [ 183 ], "much": [ 185 ], "control": [ 188 ], "on": [ 189 ], "is": [ 192 ], "related": [ 193 ], "rock\u2010water": [ 195 ], "interaction": [ 196 ], "residence": [ 198 ], "time": [ 199 ], "increases.": [ 200 ], "additionally": [ 203 ], "support": [ 204 ], "hypotheses": [ 205 ], "both": [ 207 ], "deep": [ 210 ], "sources": [ 211 ] }, "apc_list": { "value": 3000, "currency": "USD", "value_usd": 3000, "provenance": "doaj" }, "apc_paid": { "value": 3000, "currency": "USD", "value_usd": 3000, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5023946917", "display_name": "Katherine J. Knierim", "orcid": "https://orcid.org/0000-0002-5361-4132" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Katherine J. Knierim", "raw_affiliation_strings": [ "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Little Rock, Arkansas, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Little Rock, Arkansas, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5033180624", "display_name": "James A. Kingsbury", "orcid": "https://orcid.org/0000-0003-4985-275X" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "James A. Kingsbury", "raw_affiliation_strings": [ "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Nashville, Tennessee, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Nashville, Tennessee, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5032612457", "display_name": "Connor J. Haugh", "orcid": "https://orcid.org/0000-0002-5204-8271" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Connor J. Haugh", "raw_affiliation_strings": [ "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Nashville, Tennessee, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Nashville, Tennessee, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5018443521", "display_name": "Katherine M. Ransom", "orcid": "https://orcid.org/0000-0001-6195-7699" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Katherine M. Ransom", "raw_affiliation_strings": [ "U.S. Geological Survey, California Water Science Center, Sacramento, California, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, California Water Science Center, Sacramento, California, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1111/1752-1688.12879", "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1752-1688.12879", "source": { "id": "https://openalex.org/S37976914", "display_name": "JAWRA Journal of the American Water Resources Association", "issn_l": "1093-474X", "issn": [ "1093-474X", "1752-1688" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320595", "host_organization_name": "Wiley", "host_organization_lineage": [ "https://openalex.org/P4310320595" ], "host_organization_lineage_names": [ "Wiley" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "56", "issue": "6", "first_page": "1010", "last_page": "1029" }, "citation_normalized_percentile": { "value": 0.741928, "is_in_top_1_percent": false, "is_in_top_10_percent": false }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W3086451827", "cited_by_count": 19, "cited_by_percentile_year": { "min": 92, "max": 93 }, "concepts": [ { "id": "https://openalex.org/C75622301", "wikidata": "https://www.wikidata.org/wiki/Q208791", "display_name": "Aquifer", "level": 3, "score": 0.75320756 }, { "id": "https://openalex.org/C129513315", "wikidata": "https://www.wikidata.org/wiki/Q179615", "display_name": "Salinity", "level": 2, "score": 0.7429167 }, { "id": "https://openalex.org/C76177295", "wikidata": "https://www.wikidata.org/wiki/Q161598", "display_name": "Groundwater", "level": 2, "score": 0.6891093 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 0.63413584 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.5874497 }, { "id": "https://openalex.org/C129360787", "wikidata": "https://www.wikidata.org/wiki/Q2466917", "display_name": "Total dissolved solids", "level": 2, "score": 0.50828403 }, { "id": "https://openalex.org/C141650431", "wikidata": "https://www.wikidata.org/wiki/Q754836", "display_name": "Soil salinity", "level": 3, "score": 0.4243074 }, { "id": "https://openalex.org/C159390177", "wikidata": "https://www.wikidata.org/wiki/Q9161265", "display_name": "Soil science", "level": 1, "score": 0.34146434 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.27324986 }, { "id": "https://openalex.org/C159750122", "wikidata": "https://www.wikidata.org/wiki/Q96621023", "display_name": "Soil water", "level": 2, "score": 0.26806107 }, { "id": "https://openalex.org/C87717796", "wikidata": "https://www.wikidata.org/wiki/Q146326", "display_name": "Environmental engineering", "level": 1, "score": 0.16528934 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 0.056918442 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5023946917" ], "corresponding_institution_ids": [ "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 4 }, { "year": 2023, "cited_by_count": 4 }, { "year": 2022, "cited_by_count": 4 }, { "year": 2021, "cited_by_count": 6 } ], "created_date": "2020-09-21", "datasets": [], "display_name": "Using Boosted Regression Tree Models to Predict Salinity in Mississippi Embayment Aquifers, Central United States", "doi": "https://doi.org/10.1111/1752-1688.12879", "fwci": 1.197, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W3086451827", "ids": { "openalex": "https://openalex.org/W3086451827", "doi": "https://doi.org/10.1111/1752-1688.12879", "mag": "3086451827" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 1, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/groundwater-level-forecasting", "display_name": "Groundwater Level Forecasting", "score": 0.575094 }, { "id": "https://openalex.org/keywords/rainfall-runoff-modeling", "display_name": "Rainfall-Runoff Modeling", "score": 0.564765 }, { "id": "https://openalex.org/keywords/forecasting", "display_name": "Forecasting", "score": 0.509014 }, { "id": "https://openalex.org/keywords/total-dissolved-solids", "display_name": "Total dissolved solids", "score": 0.50828403 }, { "id": "https://openalex.org/keywords/transport-modeling", "display_name": "Transport Modeling", "score": 0.508021 }, { "id": "https://openalex.org/keywords/inverse-modeling", "display_name": "Inverse Modeling", "score": 0.505054 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1111/1752-1688.12879", "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1752-1688.12879", "source": { "id": "https://openalex.org/S37976914", "display_name": "JAWRA Journal of the American Water Resources Association", "issn_l": "1093-474X", "issn": [ "1093-474X", "1752-1688" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320595", "host_organization_name": "Wiley", "host_organization_lineage": [ "https://openalex.org/P4310320595" ], "host_organization_lineage_names": [ "Wiley" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W3086451827/ngrams", "open_access": { "is_oa": true, "oa_status": "hybrid", "oa_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1752-1688.12879", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1111/1752-1688.12879", "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1752-1688.12879", "source": { "id": "https://openalex.org/S37976914", "display_name": "JAWRA Journal of the American Water Resources Association", "issn_l": "1093-474X", "issn": [ "1093-474X", "1752-1688" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320595", "host_organization_name": "Wiley", "host_organization_lineage": [ "https://openalex.org/P4310320595" ], "host_organization_lineage_names": [ "Wiley" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "score": 0.995, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2020-09-13", "publication_year": 2020, "referenced_works": [ "https://openalex.org/W126676722", "https://openalex.org/W141261431", "https://openalex.org/W1561554722", "https://openalex.org/W1561995978", "https://openalex.org/W1564578302", "https://openalex.org/W1569482463", "https://openalex.org/W1583705785", "https://openalex.org/W1603287910", "https://openalex.org/W1666936902", "https://openalex.org/W1884131190", "https://openalex.org/W2027794314", "https://openalex.org/W2058073713", "https://openalex.org/W2073404525", "https://openalex.org/W2078558231", "https://openalex.org/W2100972528", "https://openalex.org/W2135695572", "https://openalex.org/W2146130035", "https://openalex.org/W2252426246", "https://openalex.org/W2265852539", "https://openalex.org/W2269064388", "https://openalex.org/W2466788594", "https://openalex.org/W2576945578", "https://openalex.org/W2582743722", "https://openalex.org/W2605739831", "https://openalex.org/W2606918275", "https://openalex.org/W2609290844", "https://openalex.org/W2621614687", "https://openalex.org/W2739881626", "https://openalex.org/W2771260661", "https://openalex.org/W2781474761", "https://openalex.org/W2786693279", "https://openalex.org/W2787894218", "https://openalex.org/W2793612784", "https://openalex.org/W2807007446", "https://openalex.org/W2808247934", "https://openalex.org/W2809039575", "https://openalex.org/W2810511505", "https://openalex.org/W2815641145", "https://openalex.org/W2902220643", "https://openalex.org/W2910296590", "https://openalex.org/W2910798341", "https://openalex.org/W2912539592", "https://openalex.org/W2913381064", "https://openalex.org/W2922051790", "https://openalex.org/W2952905952", "https://openalex.org/W2964250531", "https://openalex.org/W2995353642", "https://openalex.org/W3004412273", "https://openalex.org/W3021139032", "https://openalex.org/W3040600597", "https://openalex.org/W3147843139", "https://openalex.org/W4285719527", "https://openalex.org/W4287867253", "https://openalex.org/W429766147", "https://openalex.org/W50630694", "https://openalex.org/W61673987", "https://openalex.org/W74145975", "https://openalex.org/W78220304", "https://openalex.org/W980412514" ], "referenced_works_count": 59, "related_works": [ "https://openalex.org/W985732587", "https://openalex.org/W3036980091", "https://openalex.org/W2922239277", "https://openalex.org/W2350422742", "https://openalex.org/W2171240147", "https://openalex.org/W2007103879", "https://openalex.org/W1977713103", "https://openalex.org/W1947007732", "https://openalex.org/W1927932776", "https://openalex.org/W1608852890" ], "sustainable_development_goals": [ { "display_name": "Clean water and sanitation", "id": "https://metadata.un.org/sdg/6", "score": 0.58 } ], "title": "Using Boosted Regression Tree Models to Predict Salinity in Mississippi Embayment Aquifers, Central United States", "topics": [ { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "score": 0.995, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10398", "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "score": 0.9903, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "score": 0.9875, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-12T08:01:46.483831", "versions": [] }
}