Item talk:Q253137
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70211891", "url": "https://pubs.usgs.gov/publication/70211891" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70211891 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.rse.2020.111943", "url": "https://doi.org/10.1016/j.rse.2020.111943" } ], "journal": { "@type": "Periodical", "name": "Remote Sensing of Environment", "volumeNumber": "248", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Remote Sensing of Environment" } ], "datePublished": "2020", "dateModified": "2020-08-11", "abstract": "Winter cover crops such as barley, rye, and wheat help to improve soil structure by increasing porosity, aggregate stability, and organic matter, while reducing the loss of agricultural nutrients and sediments into waterways. The environmental performance of cover crops is affected by choice of species, planting date, planting method, nutrient inputs, temperature, and precipitation. The Maryland Department of Agriculture (MDA) oversees an agricultural cost-share program that provides farmers with funding to cover costs associated with planting winter cover crops, and the U.S. Geological Survey (USGS) and the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) have partnered with the MDA to develop satellite remote sensing techniques for measuring cover crop performance. The MDA has developed the capacity to digitize field boundaries for all fields enrolled in their cover crop programs (>26,000 fields per year) to support a remote sensing performance analysis at a statewide scal,e and has requested assistance with the associated imagery processing from the National Aeronautics and Space Administration (NASA). Using the Google Earth Engine (GEE) cloud computing platform, scripts were developed to process Landsat 5/7/8 and Harmonized Sentinel-2 imagery to measure winter cover crop performance. We calibrated cover crop performance models using linear regression between satellite vegetation indices and USGS / USDA-ARS field sampling data collected on Maryland farms between 2006 and 2012 (1298 samples). Satellite-derived Normalized Difference Vegetation Index (NDVI) values showed significant correlation with the natural logarithm of cover crop biomass (p\u00a0\u22640.01, R2\u00a0=\u00a00.56) and with observed percent vegetative ground cover (p\u00a0\u22640.01, R2\u00a0=\u00a00.68). The GEE scripts were used to composite seasonal maximum NDVI values for each enrolled cover crop field and calculate performance metrics for the winter and spring seasons of three enrollment years (2014\u201315, 2015\u201316, and 2017\u201318) for four Maryland counties. Results from winter 2017\u201318 demonstrate that rye and barley fields had higher biomass than wheat fields, and that early planting, along with planting methods that increase seed-soil contact, increased performance. The processing capabilities of GEE will support the MDA in scaling up remote sensing performance analysis statewide, providing information to evaluate the environmental outcomes associated with various agronomic management strategies. The tool can be modified for different seasonal cutoffs, utilize new sensors to capture phenology in winter and spring, and scale to larger regions for use in adaptive management of winter cover crops planted for environmental benefit.", "description": "111943, 13 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Thieme, Alison", "givenName": "Alison", "familyName": "Thieme", "affiliation": [ { "@type": "Organization", "name": "University of Maryland, Geographical Sciences" } ] }, { "@type": "Person", "name": "Yadav, Sunita", "givenName": "Sunita", "familyName": "Yadav", "affiliation": [ { "@type": "Organization", "name": "USDA Foreign Agricultural Service" } ] }, { "@type": "Person", "name": "Oddo, Perry C.", "givenName": "Perry C.", "familyName": "Oddo", "affiliation": [ { "@type": "Organization", "name": "Universities Space Research Association" } ] }, { "@type": "Person", "name": "Fitz, John M.", "givenName": "John M.", "familyName": "Fitz", "affiliation": [ { "@type": "Organization", "name": "University of Maryland, Geographical Sciences" } ] }, { "@type": "Person", "name": "McCartney, Sean", "givenName": "Sean", "familyName": "McCartney", "affiliation": [ { "@type": "Organization", "name": "Science Systems and Applications, Inc." } ] }, { "@type": "Person", "name": "King, LeeAnn", "givenName": "LeeAnn", "familyName": "King", "affiliation": [ { "@type": "Organization", "name": "Chesapeake Conservancy" } ] }, { "@type": "Person", "name": "Keppler, Jason", "givenName": "Jason", "familyName": "Keppler", "affiliation": [ { "@type": "Organization", "name": "Maryland Department of Agriculture, Office of Resource Conservation" } ] }, { "@type": "Person", "name": "McCarty, Gregory W.", "givenName": "Gregory W.", "familyName": "McCarty" }, { "@type": "Person", "name": "Hively, W. Dean", "givenName": "W. Dean", "familyName": "Hively", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5383-8064", "url": "https://orcid.org/0000-0002-5383-8064" }, "affiliation": [ { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" }, { "@type": "Organization", "name": "Eastern Geographic Science Center", "url": "https://www.usgs.gov/centers/pwrc" } ] } ], "funder": [ { "@type": "Organization", "name": "Lower Mississippi-Gulf Water Science Center", "url": "https://www.usgs.gov/centers/lower-mississippi-gulf-water-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "state", "name": "Maryland" }, { "@type": "Place", "additionalType": "state", "name": "Gueen Anne's County" }, { "@type": "Place", "additionalType": "state", "name": "Somerset County" }, { "@type": "Place", "additionalType": "state", "name": "Talbot County" }, { "@type": "Place", "additionalType": "state", "name": "Washington County", "url": "https://geonames.org/4140987" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -78.3544921875, 39.715638134796336 ], [ -78.31054687499999, 39.639537564366684 ], [ -78.145751953125, 39.68182601089365 ], [ -77.607421875, 39.232253141714885 ], [ -77.36572265625, 39.7240885773337 ], [ -78.3544921875, 39.715638134796336 ] ] ] } }, { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -76.014404296875, 39.68182601089365 ], [ -76.2890625, 39.45316112807394 ], [ -76.1572265625, 39.27478966170308 ], [ -75.73974609375, 39.232253141714885 ], [ -75.772705078125, 39.67337039176558 ], [ -76.014404296875, 39.68182601089365 ] ] ] } }, { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -75.816650390625, 37.95286091815649 ], [ -75.498046875, 38.039438891821746 ], [ -75.65185546874999, 38.26406296833961 ], [ -75.970458984375, 38.212288054388175 ], [ -75.816650390625, 37.95286091815649 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 39.563987267763295, "longitude": -77.74621461157597 }, { "@type": "GeoCoordinates", "latitude": 39.451494641480664, "longitude": -75.97283979823116 }, { "@type": "GeoCoordinates", "latitude": 38.11520390797912, "longitude": -75.736826009194 } ] } ] }, "OpenAlex": { "abstract_inverted_index": { "Winter": [ 0 ], "cover": [ 1, 37, 71, 77, 107, 126, 184, 189, 232, 246, 266, 382 ], "crops": [ 2, 38, 383 ], "such": [ 3 ], "as": [ 4 ], "barley,": [ 5 ], "rye,": [ 6 ], "and": [ 7, 19, 29, 52, 79, 85, 144, 157, 177, 200, 213, 240, 269, 276, 285, 298, 307, 368, 370, 430 ], "wheat": [ 8, 305 ], "help": [ 9 ], "to": [ 10, 70, 99, 116, 133, 173, 181, 257, 340, 363, 372 ], "improve": [ 11 ], "soil": [ 12 ], "structure": [ 13 ], "by": [ 14, 41, 392 ], "increasing": [ 15 ], "porosity,": [ 16 ], "aggregate": [ 17 ], "stability,": [ 18 ], "organic": [ 20 ], "matter,": [ 21 ], "while": [ 22 ], "reducing": [ 23 ], "the": [ 24, 80, 86, 97, 114, 149, 154, 162, 228, 274, 328, 342, 393, 400, 405, 414, 425, 431 ], "loss": [ 25 ], "of": [ 26, 36, 43, 57, 89, 231, 279, 324, 380, 428 ], "agricultural": [ 27, 62 ], "nutrients": [ 28 ], "sediments": [ 30 ], "into": [ 31 ], "waterways.": [ 32 ], "The": [ 33, 54, 110, 252, 321, 351 ], "environmental": [ 34, 343, 386 ], "performance": [ 35, 138, 191, 271, 335 ], "is": [ 39 ], "affected": [ 40 ], "choice": [ 42 ], "species,": [ 44 ], "planting": [ 45, 47, 75, 313 ], "date,": [ 46 ], "method,": [ 48 ], "nutrient": [ 49 ], "inputs,": [ 50 ], "temperature,": [ 51 ], "precipitation.": [ 53 ], "Maryland": [ 55, 209, 289, 426 ], "Department": [ 56, 88, 427 ], "Agriculture": [ 58 ], "(MDA)": [ 59 ], "oversees": [ 60 ], "an": [ 61 ], "cost-share": [ 63 ], "program": [ 64 ], "that": [ 65, 296, 308, 315 ], "provides": [ 66 ], "farmers": [ 67 ], "with": [ 68, 74, 96, 148, 227, 241, 312, 346 ], "funding": [ 69 ], "costs": [ 72 ], "associated": [ 73, 150, 345 ], "winter": [ 76, 183, 275, 293, 367, 381 ], "crops,": [ 78 ], "U.S.": [ 81, 87 ], "Geological": [ 82 ], "Survey": [ 83 ], "(USGS)": [ 84 ], "Agriculture-Agricultural": [ 90 ], "Research": [ 91, 422 ], "Service": [ 92 ], "(USDA-ARS)": [ 93 ], "have": [ 94 ], "partnered": [ 95 ], "MDA": [ 98, 111, 329 ], "develop": [ 100 ], "satellite": [ 101, 197 ], "remote": [ 102, 136, 333 ], "sensing": [ 103, 137, 334 ], "techniques": [ 104 ], "for": [ 105, 120, 263, 273, 287, 356, 375, 385 ], "measuring": [ 106 ], "crop": [ 108, 127, 185, 190, 233, 267 ], "performance.": [ 109, 186, 320 ], "has": [ 112, 145 ], "developed": [ 113, 172 ], "capacity": [ 115 ], "digitize": [ 117 ], "field": [ 118, 204, 268 ], "boundaries": [ 119 ], "all": [ 121 ], "fields": [ 122, 130, 300 ], "enrolled": [ 123, 265 ], "in": [ 124, 330, 366, 377 ], "their": [ 125 ], "programs": [ 128 ], "(>26,000": [ 129 ], "per": [ 131 ], "year)": [ 132 ], "support": [ 134, 327 ], "a": [ 135, 141 ], "analysis": [ 139, 336 ], "at": [ 140 ], "statewide": [ 142 ], "scal,e": [ 143 ], "requested": [ 146 ], "assistance": [ 147 ], "imagery": [ 151, 180 ], "processing": [ 152, 322 ], "from": [ 153, 292 ], "National": [ 155, 434 ], "Aeronautics": [ 156 ], "Space": [ 158 ], "Administration": [ 159 ], "(NASA).": [ 160 ], "Using": [ 161 ], "Google": [ 163 ], "Earth": [ 164 ], "Engine": [ 165 ], "(GEE)": [ 166 ], "cloud": [ 167 ], "computing": [ 168 ], "platform,": [ 169 ], "scripts": [ 170, 254 ], "were": [ 171, 255 ], "process": [ 174 ], "Landsat": [ 175 ], "5/7/8": [ 176 ], "Harmonized": [ 178 ], "Sentinel-2": [ 179 ], "measure": [ 182 ], "We": [ 187 ], "calibrated": [ 188 ], "models": [ 192 ], "using": [ 193 ], "linear": [ 194 ], "regression": [ 195 ], "between": [ 196, 211 ], "vegetation": [ 198 ], "indices": [ 199 ], "USGS": [ 201, 394 ], "/": [ 202 ], "USDA-ARS": [ 203 ], "sampling": [ 205 ], "data": [ 206 ], "collected": [ 207 ], "on": [ 208 ], "farms": [ 210 ], "2006": [ 212 ], "2012": [ 214 ], "(1298": [ 215 ], "samples).": [ 216 ], "Satellite-derived": [ 217 ], "Normalized": [ 218 ], "Difference": [ 219 ], "Vegetation": [ 220 ], "Index": [ 221 ], "(NDVI)": [ 222 ], "values": [ 223, 262 ], "showed": [ 224 ], "significant": [ 225 ], "correlation": [ 226 ], "natural": [ 229 ], "logarithm": [ 230 ], "biomass": [ 234, 303 ], "(p": [ 235, 247 ], "\u22640.01,": [ 236, 248 ], "R2": [ 237, 249 ], "=": [ 238, 250 ], "0.56)": [ 239 ], "observed": [ 242 ], "percent": [ 243 ], "vegetative": [ 244 ], "ground": [ 245 ], "0.68).": [ 251 ], "GEE": [ 253, 325 ], "used": [ 256 ], "composite": [ 258 ], "seasonal": [ 259, 358 ], "maximum": [ 260 ], "NDVI": [ 261 ], "each": [ 264 ], "calculate": [ 270 ], "metrics": [ 272 ], "spring": [ 277 ], "seasons": [ 278 ], "three": [ 280 ], "enrollment": [ 281 ], "years": [ 282 ], "(2014\u201315,": [ 283 ], "2015\u201316,": [ 284 ], "2017\u201318)": [ 286 ], "four": [ 288 ], "counties.": [ 290 ], "Results": [ 291 ], "2017\u201318": [ 294 ], "demonstrate": [ 295 ], "rye": [ 297 ], "barley": [ 299 ], "had": [ 301 ], "higher": [ 302 ], "than": [ 304 ], "fields,": [ 306 ], "early": [ 309 ], "planting,": [ 310 ], "along": [ 311 ], "methods": [ 314 ], "increase": [ 316 ], "seed-soil": [ 317 ], "contact,": [ 318 ], "increased": [ 319 ], "capabilities": [ 323 ], "will": [ 326 ], "scaling": [ 331 ], "up": [ 332 ], "statewide,": [ 337 ], "providing": [ 338 ], "information": [ 339 ], "evaluate": [ 341 ], "outcomes": [ 344 ], "various": [ 347 ], "agronomic": [ 348 ], "management": [ 349, 379 ], "strategies.": [ 350 ], "tool": [ 352 ], "can": [ 353 ], "be": [ 354 ], "modified": [ 355 ], "different": [ 357 ], "cutoffs,": [ 359 ], "utilize": [ 360 ], "new": [ 361 ], "sensors": [ 362 ], "capture": [ 364 ], "phenology": [ 365 ], "spring,": [ 369 ], "scale": [ 371 ], "larger": [ 373 ], "regions": [ 374 ], "use": [ 376 ], "adaptive": [ 378 ], "planted": [ 384 ], "benefit.": [ 387 ], "This": [ 388 ], "project": [ 389 ], "was": [ 390 ], "supported": [ 391 ], "Land": [ 395, 401 ], "Change": [ 396 ], "Science": [ 397 ], "Program": [ 398 ], "within": [ 399 ], "Resources": [ 402 ], "Mission": [ 403 ], "Area,": [ 404 ], "USDA": [ 406, 415 ], "Choptank": [ 407 ], "River": [ 408 ], "Conservation": [ 409 ], "Effects": [ 410 ], "Assessment": [ 411 ], "Project": [ 412 ], "(CEAP),": [ 413 ], "Lower": [ 416 ], "Chesapeake": [ 417 ], "Bay": [ 418 ], "Long": [ 419 ], "Term": [ 420 ], "Agricultural": [ 421 ], "(LTAR)": [ 423 ], "Project;": [ 424 ], "Agriculture;": [ 429 ], "NASA": [ 432 ], "DEVELOP": [ 433 ], "Program.": [ 435 ] }, "apc_list": { "value": 4070, "currency": "USD", "value_usd": 4070, "provenance": "doaj" }, "apc_paid": { "value": 4070, "currency": "USD", "value_usd": 4070, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5071434995", "display_name": "Alison Thieme", "orcid": "https://orcid.org/0000-0001-5458-7554" }, "institutions": [ { "id": "https://openalex.org/I66946132", "display_name": "University of Maryland, College Park", "ror": "https://ror.org/047s2c258", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I66946132" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Alison Thieme", "raw_affiliation_strings": [ "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "University of Maryland, Department of Geographical Sciences, 2181 Samuel J. LeFrak Hall, 7251 Preinkert Drive, College Park, MD 20742, United States" ], "affiliations": [ { "raw_affiliation_string": "University of Maryland, Department of Geographical Sciences, 2181 Samuel J. LeFrak Hall, 7251 Preinkert Drive, College Park, MD 20742, United States", "institution_ids": [ "https://openalex.org/I66946132" ] }, { "raw_affiliation_string": "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "institution_ids": [] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5080673258", "display_name": "Sunita Yadav", "orcid": "https://orcid.org/0000-0003-2125-183X" }, "institutions": [ { "id": "https://openalex.org/I2799759799", "display_name": "Foreign Agricultural Service", "ror": "https://ror.org/00t77bz53", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1336096307", "https://openalex.org/I2799759799" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Sunita Yadav", "raw_affiliation_strings": [ "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "U.S. Department of Agriculture, Foreign Agricultural Service, 1400 Independence Avenue S.W., Washington, D.C. 20250, United States" ], "affiliations": [ { "raw_affiliation_string": "U.S. Department of Agriculture, Foreign Agricultural Service, 1400 Independence Avenue S.W., Washington, D.C. 20250, United States", "institution_ids": [ "https://openalex.org/I2799759799" ] }, { "raw_affiliation_string": "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "institution_ids": [] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5044973164", "display_name": "Perry Oddo", "orcid": "https://orcid.org/0000-0003-3061-0304" }, "institutions": [ { "id": "https://openalex.org/I1329765538", "display_name": "Universities Space Research Association", "ror": "https://ror.org/043pgqy52", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I1329765538" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Perry C. Oddo", "raw_affiliation_strings": [ "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "Universities Space Research Association (USRA), 7178 Columbia Gateway Drive, Columbia, MD 21046, United States" ], "affiliations": [ { "raw_affiliation_string": "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "institution_ids": [] }, { "raw_affiliation_string": "Universities Space Research Association (USRA), 7178 Columbia Gateway Drive, Columbia, MD 21046, United States", "institution_ids": [ "https://openalex.org/I1329765538" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5050475874", "display_name": "John M. Fitz", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I66946132", "display_name": "University of Maryland, College Park", "ror": "https://ror.org/047s2c258", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I66946132" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "John M. Fitz", "raw_affiliation_strings": [ "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "University of Maryland, Department of Geographical Sciences, 2181 Samuel J. LeFrak Hall, 7251 Preinkert Drive, College Park, MD 20742, United States" ], "affiliations": [ { "raw_affiliation_string": "University of Maryland, Department of Geographical Sciences, 2181 Samuel J. LeFrak Hall, 7251 Preinkert Drive, College Park, MD 20742, United States", "institution_ids": [ "https://openalex.org/I66946132" ] }, { "raw_affiliation_string": "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "institution_ids": [] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5006904207", "display_name": "Sean McCartney", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I4210144891", "display_name": "Science Systems and Applications (United States)", "ror": "https://ror.org/03xec1444", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I4210144891" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Sean McCartney", "raw_affiliation_strings": [ "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "Science Systems & Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD 20706, United States" ], "affiliations": [ { "raw_affiliation_string": "Science Systems & Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD 20706, United States", "institution_ids": [ "https://openalex.org/I4210144891" ] }, { "raw_affiliation_string": "NASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States", "institution_ids": [] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5026647800", "display_name": "LeeAnn King", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1336096307", "display_name": "United States Department of Agriculture", "ror": "https://ror.org/01na82s61", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1336096307" ] }, { "id": "https://openalex.org/I1312222531", "display_name": "Agricultural Research Service", "ror": "https://ror.org/02d2m2044", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1312222531", "https://openalex.org/I1336096307" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "LeeAnn King", "raw_affiliation_strings": [ "U.S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States" ], "affiliations": [ { "raw_affiliation_string": "U.S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States", "institution_ids": [ "https://openalex.org/I1336096307", "https://openalex.org/I1312222531" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5090679374", "display_name": "Jason Keppler", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I4210105538", "display_name": "Maryland Department of Natural Resources", "ror": "https://ror.org/01fem2359", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I4210105538" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jason Keppler", "raw_affiliation_strings": [ "Maryland Department of Agriculture, 50 Harry S. Truman Parkway, Annapolis, MD 21401, United States" ], "affiliations": [ { "raw_affiliation_string": "Maryland Department of Agriculture, 50 Harry S. Truman Parkway, Annapolis, MD 21401, United States", "institution_ids": [ "https://openalex.org/I4210105538" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5046606001", "display_name": "Gregory W. McCarty", "orcid": "https://orcid.org/0000-0001-7064-7166" }, "institutions": [ { "id": "https://openalex.org/I1336096307", "display_name": "United States Department of Agriculture", "ror": "https://ror.org/01na82s61", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1336096307" ] }, { "id": "https://openalex.org/I1312222531", "display_name": "Agricultural Research Service", "ror": "https://ror.org/02d2m2044", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1312222531", "https://openalex.org/I1336096307" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Gregory W. McCarty", "raw_affiliation_strings": [ "U.S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States" ], "affiliations": [ { "raw_affiliation_string": "U.S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States", "institution_ids": [ "https://openalex.org/I1336096307", "https://openalex.org/I1312222531" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5051484384", "display_name": "W. Dean Hively", "orcid": "https://orcid.org/0000-0002-5383-8064" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "W. Dean Hively", "raw_affiliation_strings": [ "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.rse.2020.111943", "pdf_url": null, "source": { "id": "https://openalex.org/S141808269", "display_name": "Remote Sensing of Environment", "issn_l": "0034-4257", "issn": [ "0034-4257", "1879-0704" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "248", "issue": null, "first_page": "111943", "last_page": "111943" }, "citation_normalized_percentile": { "value": 0.999949, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W3040952795", "cited_by_count": 48, "cited_by_percentile_year": { "min": 97, "max": 98 }, "concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.73067814 }, { "id": "https://openalex.org/C150547873", "wikidata": "https://www.wikidata.org/wiki/Q947851", "display_name": "Watershed", "level": 2, "score": 0.57096153 }, { "id": "https://openalex.org/C34070608", "wikidata": "https://www.wikidata.org/wiki/Q3001783", "display_name": "Cover crop", "level": 2, "score": 0.5426015 }, { "id": "https://openalex.org/C1549246", "wikidata": "https://www.wikidata.org/wiki/Q718775", "display_name": "Normalized Difference Vegetation Index", "level": 3, "score": 0.48569497 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.45747566 }, { "id": "https://openalex.org/C2778102629", "wikidata": "https://www.wikidata.org/wiki/Q725252", "display_name": "Satellite imagery", "level": 2, "score": 0.43444 }, { "id": "https://openalex.org/C2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 0.41300613 }, { "id": "https://openalex.org/C118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 0.4107519 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 0.3971842 }, { "id": "https://openalex.org/C54286561", "wikidata": "https://www.wikidata.org/wiki/Q397350", "display_name": "Agroforestry", "level": 1, "score": 0.21586803 }, { "id": "https://openalex.org/C4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 0.19456261 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.18503845 }, { "id": "https://openalex.org/C6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 0.18183711 }, { "id": "https://openalex.org/C25989453", "wikidata": "https://www.wikidata.org/wiki/Q446746", "display_name": "Leaf area index", "level": 2, "score": 0.17936078 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 0.11539322 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.11431414 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.09663215 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5051484384" ], "corresponding_institution_ids": [ "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 9 }, { "year": 2023, "cited_by_count": 14 }, { "year": 2022, "cited_by_count": 14 }, { "year": 2021, "cited_by_count": 9 }, { "year": 2020, "cited_by_count": 2 } ], "created_date": "2020-07-16", "datasets": [], "display_name": "Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed", "doi": "https://doi.org/10.1016/j.rse.2020.111943", "fwci": 4.696, "grants": [ { "funder": "https://openalex.org/F4320306101", "funder_display_name": "National Aeronautics and Space Administration", "award_id": null }, { "funder": "https://openalex.org/F4320306114", "funder_display_name": "U.S. Department of Agriculture", "award_id": null }, { "funder": "https://openalex.org/F4320332183", "funder_display_name": "U.S. Geological Survey", "award_id": null } ], "has_fulltext": false, "id": "https://openalex.org/W3040952795", "ids": { "openalex": "https://openalex.org/W3040952795", "doi": "https://doi.org/10.1016/j.rse.2020.111943", "mag": "3040952795" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 8, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.517878 }, { "id": "https://openalex.org/keywords/land-cover", "display_name": "Land cover", "score": 0.41300613 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.rse.2020.111943", "pdf_url": null, "source": { "id": "https://openalex.org/S141808269", "display_name": "Remote Sensing of Environment", "issn_l": "0034-4257", "issn": [ "0034-4257", "1879-0704" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W3040952795/ngrams", "open_access": { "is_oa": true, "oa_status": "hybrid", "oa_url": "https://doi.org/10.1016/j.rse.2020.111943", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.rse.2020.111943", "pdf_url": null, "source": { "id": "https://openalex.org/S141808269", "display_name": "Remote Sensing of Environment", "issn_l": "0034-4257", "issn": [ "0034-4257", "1879-0704" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9994, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2020-10-01", "publication_year": 2020, "referenced_works": [ "https://openalex.org/W1518917059", "https://openalex.org/W1579678423", "https://openalex.org/W1950027562", "https://openalex.org/W1972835639", "https://openalex.org/W1999068520", "https://openalex.org/W2001728655", "https://openalex.org/W2010308608", "https://openalex.org/W2011787232", "https://openalex.org/W2012107446", "https://openalex.org/W2022270279", "https://openalex.org/W2047243441", "https://openalex.org/W2063623478", "https://openalex.org/W2064235439", "https://openalex.org/W2078468126", "https://openalex.org/W209114540", "https://openalex.org/W2130335904", "https://openalex.org/W2139267096", "https://openalex.org/W2139709933", "https://openalex.org/W2177020455", "https://openalex.org/W2220340401", "https://openalex.org/W2234018419", "https://openalex.org/W2344328155", "https://openalex.org/W2346660433", "https://openalex.org/W2462586880", "https://openalex.org/W2469676492", "https://openalex.org/W2511381541", "https://openalex.org/W2605847660", "https://openalex.org/W2725897987", "https://openalex.org/W2799417842", "https://openalex.org/W2803672674", "https://openalex.org/W2889444878", "https://openalex.org/W2897285410", "https://openalex.org/W2901852697", "https://openalex.org/W2923662656", "https://openalex.org/W3009251631", "https://openalex.org/W3024084440", "https://openalex.org/W41455429", "https://openalex.org/W76798703" ], "referenced_works_count": 38, "related_works": [ "https://openalex.org/W4385533602", "https://openalex.org/W4382239404", "https://openalex.org/W4324030030", "https://openalex.org/W4200084543", "https://openalex.org/W3207046288", "https://openalex.org/W3189212133", "https://openalex.org/W3023446922", "https://openalex.org/W2053086167", "https://openalex.org/W2021379394", "https://openalex.org/W1980260791" ], "sustainable_development_goals": [ { "display_name": "Life on land", "score": 0.51, "id": "https://metadata.un.org/sdg/15" } ], "title": "Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9994, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13388", "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "score": 0.9962, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "score": 0.996, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-11T20:04:44.315171", "versions": [] }
}