Item talk:Q253092
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Training data selection for annual land cover classification for the LCMAP initiative", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70209599", "url": "https://pubs.usgs.gov/publication/70209599" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70209599 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/rs12040699", "url": "https://doi.org/10.3390/rs12040699" } ], "journal": { "@type": "Periodical", "name": "Remote Sensing", "volumeNumber": "12", "issueNumber": "4" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Remote Sensing" } ], "datePublished": "2020", "dateModified": "2020-04-15", "abstract": "The U.S. Geological Survey\u2019s Land Change Monitoring, Assessment, and Projection (LCMAP) initiative characterizes changes in land cover, use, and condition with the goal of producing land change information that improves understanding of the earth system and provides insight into the impacts of land change on society. For LCMAP, all available high-quality data from the Landsat archive is used in a time series approach to detect land surface change. Annual thematic land cover maps are produced by classifying time series models. In this paper, we describe optimization of the classification method used to derive the thematic land cover product. We investigated the influences of auxiliary data, sample size, and training from different sources such as the U.S. Geological Survey\u2019s Land Cover Trends project and National Land Cover Database (NLCD 2001 and NLCD 2011). Results were evaluated and validated based on independent data from the training dataset. We found that refining auxiliary data effectively reduced artifacts in the thematic land cover map that are related to data availability (i.e., SLC-off). The classification accuracy and stability were improved considerably by using a total of 20 million training pixels with a minimum of 600,000 and a maximum of 8 million training pixels per class. Finally, the NLCD 2001 training data delivered the best classification accuracy. Comparing to the original LCMAP classification strategy (Trends training data, 20,000 samples), the optimized classification strategy considerably improved the annual land cover map accuracy.", "description": "699, 16 p.", "publisher": { "@type": "Organization", "name": "MDPI" }, "author": [ { "@type": "Person", "name": "Zelenak, Daniel J.", "givenName": "Daniel J.", "familyName": "Zelenak", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-3457-0960", "url": "https://orcid.org/0000-0003-3457-0960" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Zhou, Qiang", "givenName": "Qiang", "familyName": "Zhou", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1282-8177", "url": "https://orcid.org/0000-0002-1282-8177" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Tollerud, Heather J.", "givenName": "Heather J.", "familyName": "Tollerud", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-9507-4456", "url": "https://orcid.org/0000-0001-9507-4456" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Barber, Christopher", "givenName": "Christopher", "familyName": "Barber", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-0570-1140", "url": "https://orcid.org/0000-0003-0570-1140" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Smith, Kelcy kelcy.smith.ctr@usgs.gov", "givenName": "Kelcy", "familyName": "Smith", "email": "kelcy.smith.ctr@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-6811-1485", "url": "https://orcid.org/0000-0001-6811-1485" } } ], "funder": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, "OpenAlex": { "abstract_inverted_index": { "The": [ 0, 49, 143 ], "U.S.": [ 1, 126 ], "Geological": [ 2, 127 ], "Survey\u2019s": [ 3, 128 ], "Land": [ 4, 129, 135 ], "Change": [ 5 ], "Monitoring,": [ 6 ], "Assessment,": [ 7 ], "and": [ 8, 19, 37, 71, 118, 133, 140, 147, 184, 201 ], "Projection": [ 9 ], "(LCMAP)": [ 10 ], "initiative": [ 11 ], "involves": [ 12 ], "detecting": [ 13 ], "changes": [ 14 ], "in": [ 15, 62, 167 ], "land": [ 16, 26, 44, 74, 79, 106, 170, 262 ], "cover,": [ 17 ], "use,": [ 18 ], "condition": [ 20 ], "with": [ 21, 196 ], "the": [ 22, 31, 34, 41, 59, 69, 95, 98, 104, 111, 125, 154, 161, 168, 181, 228, 234, 240, 255, 260 ], "goal": [ 23 ], "of": [ 24, 33, 43, 73, 97, 113, 191, 199, 204, 215, 269 ], "producing": [ 25 ], "change": [ 27, 46, 50 ], "information": [ 28 ], "to": [ 29, 67, 102, 176, 239 ], "improve": [ 30 ], "understanding": [ 32 ], "Earth": [ 35 ], "system": [ 36 ], "provide": [ 38 ], "insights": [ 39 ], "on": [ 40, 47, 150 ], "impacts": [ 42 ], "surface": [ 45, 75 ], "society.": [ 48 ], "detection": [ 51 ], "method": [ 52, 100 ], "ingests": [ 53 ], "all": [ 54 ], "available": [ 55 ], "high-quality": [ 56 ], "data": [ 57, 152, 163, 177, 232 ], "from": [ 58, 120, 153 ], "Landsat": [ 60 ], "archive": [ 61 ], "a": [ 63, 189, 197, 202 ], "time": [ 64, 87 ], "series": [ 65, 88 ], "approach": [ 66 ], "identify": [ 68 ], "timing": [ 70 ], "location": [ 72 ], "change.": [ 76 ], "Annual": [ 77 ], "thematic": [ 78, 105, 169 ], "cover": [ 80, 107, 171, 263 ], "maps": [ 81 ], "are": [ 82, 174 ], "then": [ 83 ], "produced": [ 84 ], "by": [ 85, 187, 222, 266 ], "classifying": [ 86 ], "models.": [ 89 ], "In": [ 90 ], "this": [ 91 ], "paper,": [ 92 ], "we": [ 93 ], "describe": [ 94 ], "optimization": [ 96 ], "classification": [ 99, 182, 236, 243, 257 ], "used": [ 101, 245 ], "derive": [ 103 ], "product.": [ 108 ], "We": [ 109, 157, 179 ], "investigated": [ 110 ], "influences": [ 112 ], "auxiliary": [ 114, 162 ], "data,": [ 115, 252 ], "sample": [ 116 ], "size,": [ 117 ], "training": [ 119, 155, 194, 207, 231, 251 ], "different": [ 121 ], "sources": [ 122 ], "such": [ 123 ], "as": [ 124 ], "Cover": [ 130, 136 ], "Trends": [ 131, 250 ], "project": [ 132 ], "National": [ 134 ], "Database": [ 137 ], "(NLCD": [ 138 ], "2001": [ 139, 230 ], "NLCD": [ 141, 229 ], "2011).": [ 142 ], "results": [ 144 ], "were": [ 145 ], "evaluated": [ 146 ], "validated": [ 148 ], "based": [ 149 ], "independent": [ 151 ], "dataset.": [ 156 ], "found": [ 158 ], "that": [ 159, 173, 227 ], "refining": [ 160 ], "effectively": [ 164 ], "reduced": [ 165 ], "artifacts": [ 166 ], "map": [ 172, 264 ], "related": [ 175 ], "availability.": [ 178 ], "improved": [ 180, 259 ], "accuracy": [ 183, 265 ], "stability": [ 185 ], "considerably": [ 186 ], "using": [ 188 ], "total": [ 190 ], "20": [ 192 ], "million": [ 193, 206 ], "pixels": [ 195, 208 ], "minimum": [ 198 ], "600,000": [ 200 ], "maximum": [ 203 ], "8": [ 205 ], "per": [ 209 ], "class": [ 210 ], "within": [ 211 ], "geographic": [ 212 ], "windows": [ 213 ], "consisting": [ 214 ], "nine": [ 216 ], "Analysis": [ 217 ], "Ready": [ 218 ], "Data": [ 219 ], "tiles": [ 220 ], "(450": [ 221 ], "450": [ 223 ], "km2).": [ 224 ], "Comparisons": [ 225 ], "revealed": [ 226 ], "delivered": [ 233 ], "best": [ 235 ], "accuracy.": [ 237 ], "Compared": [ 238 ], "original": [ 241 ], "LCMAP": [ 242 ], "strategy": [ 244, 258 ], "for": [ 246 ], "early": [ 247 ], "evaluation": [ 248 ], "(e.g.,": [ 249 ], "20,000": [ 253 ], "samples),": [ 254 ], "optimized": [ 256 ], "annual": [ 261 ], "an": [ 267 ], "average": [ 268 ], "10%.": [ 270 ] }, "apc_list": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "apc_paid": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5020198396", "display_name": "Qiang Zhou", "orcid": "https://orcid.org/0000-0002-1282-8177" }, "institutions": [ { "id": "https://openalex.org/I121847817", "display_name": "The Graduate Center, CUNY", "ror": "https://ror.org/00awd9g61", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I121847817" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Qiang Zhou", "raw_affiliation_strings": [ "ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I121847817", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5076387017", "display_name": "H. Tollerud", "orcid": "https://orcid.org/0000-0001-9507-4456" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Heather Tollerud", "raw_affiliation_strings": [ "U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5103493997", "display_name": "Christopher Barber", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Christopher Barber", "raw_affiliation_strings": [ "U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5067160689", "display_name": "Kelcy Smith", "orcid": "https://orcid.org/0000-0001-6811-1485" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Kelcy Smith", "raw_affiliation_strings": [ "KBR, Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "KBR, Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5046985098", "display_name": "Daniel Zelenak", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Daniel Zelenak", "raw_affiliation_strings": [ "Innovate! Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "Innovate! Contractor to the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12040699", "pdf_url": "https://www.mdpi.com/2072-4292/12/4/699/pdf?version=1582804909", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "12", "issue": "4", "first_page": "699", "last_page": "699" }, "citation_normalized_percentile": { "value": 0.999949, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W3008834779", "cited_by_count": 21, "cited_by_percentile_year": { "min": 93, "max": 94 }, "concepts": [ { "id": "https://openalex.org/C2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 0.79483986 }, { "id": "https://openalex.org/C93692415", "wikidata": "https://www.wikidata.org/wiki/Q1502030", "display_name": "Thematic map", "level": 2, "score": 0.76758796 }, { "id": "https://openalex.org/C2775938548", "wikidata": "https://www.wikidata.org/wiki/Q1565182", "display_name": "Thematic Mapper", "level": 3, "score": 0.5060739 }, { "id": "https://openalex.org/C203595873", "wikidata": "https://www.wikidata.org/wiki/Q25389927", "display_name": "Change detection", "level": 2, "score": 0.46472698 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.4448846 }, { "id": "https://openalex.org/C4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 0.4009239 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.3872001 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.34504366 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 0.33013493 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.3298973 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.3097936 }, { "id": "https://openalex.org/C2778102629", "wikidata": "https://www.wikidata.org/wiki/Q725252", "display_name": "Satellite imagery", "level": 2, "score": 0.20801234 }, { "id": "https://openalex.org/C147176958", "wikidata": "https://www.wikidata.org/wiki/Q77590", "display_name": "Civil engineering", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5020198396" ], "corresponding_institution_ids": [ "https://openalex.org/I121847817", "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 2 }, { "year": 2023, "cited_by_count": 8 }, { "year": 2022, "cited_by_count": 4 }, { "year": 2021, "cited_by_count": 4 }, { "year": 2020, "cited_by_count": 3 } ], "created_date": "2020-03-06", "datasets": [], "display_name": "Training Data Selection for Annual Land Cover Classification for the Land Change Monitoring, Assessment, and Projection (LCMAP) Initiative", "doi": "https://doi.org/10.3390/rs12040699", "fwci": 2.288, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W3008834779", "ids": { "openalex": "https://openalex.org/W3008834779", "doi": "https://doi.org/10.3390/rs12040699", "mag": "3008834779" }, "indexed_in": [ "crossref", "doaj" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/land-cover", "display_name": "Land cover", "score": 0.79483986 }, { "id": "https://openalex.org/keywords/thematic-map", "display_name": "Thematic map", "score": 0.76758796 }, { "id": "https://openalex.org/keywords/change-detection", "display_name": "Change Detection", "score": 0.577898 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.52594 }, { "id": "https://openalex.org/keywords/biomass-estimation", "display_name": "Biomass Estimation", "score": 0.509928 }, { "id": "https://openalex.org/keywords/thematic-mapper", "display_name": "Thematic Mapper", "score": 0.5060739 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12040699", "pdf_url": "https://www.mdpi.com/2072-4292/12/4/699/pdf?version=1582804909", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": false, "landing_page_url": "https://doaj.org/article/b39f34efd79446d1ab5387cbcced9723", "pdf_url": null, "source": { "id": "https://openalex.org/S4306401280", "display_name": "DOAJ (DOAJ: Directory of Open Access Journals)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": null, "host_organization_name": null, "host_organization_lineage": [], "host_organization_lineage_names": [], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 2, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W3008834779/ngrams", "open_access": { "is_oa": true, "oa_status": "gold", "oa_url": "https://www.mdpi.com/2072-4292/12/4/699/pdf?version=1582804909", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs12040699", "pdf_url": "https://www.mdpi.com/2072-4292/12/4/699/pdf?version=1582804909", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.998, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2020-02-20", "publication_year": 2020, "referenced_works": [ "https://openalex.org/W1536340909", "https://openalex.org/W1565635109", "https://openalex.org/W1580493526", "https://openalex.org/W1633601276", "https://openalex.org/W1781559127", "https://openalex.org/W1982121855", "https://openalex.org/W1998979050", "https://openalex.org/W2006929658", "https://openalex.org/W2037935179", "https://openalex.org/W2046703661", "https://openalex.org/W2055718260", "https://openalex.org/W2058963764", "https://openalex.org/W2063907334", "https://openalex.org/W2078619499", "https://openalex.org/W2121025662", "https://openalex.org/W2121690928", "https://openalex.org/W2127559745", "https://openalex.org/W2174882701", "https://openalex.org/W2199321793", "https://openalex.org/W2553544826", "https://openalex.org/W2584952387", "https://openalex.org/W2765626704", "https://openalex.org/W2793927960", "https://openalex.org/W2891721681", "https://openalex.org/W2915157699", "https://openalex.org/W2940726923", "https://openalex.org/W2967165937", "https://openalex.org/W3003421670", "https://openalex.org/W3104060823", "https://openalex.org/W3122084549", "https://openalex.org/W4233331630", "https://openalex.org/W602362800" ], "referenced_works_count": 32, "related_works": [ "https://openalex.org/W835875619", "https://openalex.org/W793076704", "https://openalex.org/W578695671", "https://openalex.org/W2542782471", "https://openalex.org/W2365305234", "https://openalex.org/W2132625770", "https://openalex.org/W2094383227", "https://openalex.org/W2074985732", "https://openalex.org/W2055025919", "https://openalex.org/W1980476642" ], "sustainable_development_goals": [ { "display_name": "Life on land", "id": "https://metadata.un.org/sdg/15", "score": 0.66 } ], "title": "Training Data Selection for Annual Land Cover Classification for the Land Change Monitoring, Assessment, and Projection (LCMAP) Initiative", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.998, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "score": 0.9908, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "score": 0.9839, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-09T05:19:47.482001", "versions": [] }
}