Item talk:Q250727
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Hillslope chemical weathering across Paran\u00e1, Brazil: a data mining-GIS hybrid approach", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70034406", "url": "https://pubs.usgs.gov/publication/70034406" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70034406 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.geomorph.2011.05.006", "url": "https://doi.org/10.1016/j.geomorph.2011.05.006" }, { "@type": "PropertyValue", "propertyID": "ISSN", "value": "0169555X" } ], "journal": { "@type": "Periodical", "name": "Geomorphology", "volumeNumber": "132", "issueNumber": "3-4" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Geomorphology" } ], "datePublished": "2011", "dateModified": "2015-03-12", "abstract": "Self-organizing map (SOM) and geographic information system (GIS) models were used to investigate the nonlinear relationships associated with geochemical weathering processes at local (~100\u00a0km2) and regional (~50,000\u00a0km2) scales. The data set consisted of 1) 22 B-horizon soil variables: P, C, pH, Al, total acidity, Ca, Mg, K, total cation exchange capacity, sum of exchangeable bases, base saturation, Cu, Zn, Fe, B, S, Mn, gammaspectrometry (total count, potassium, thorium, and uranium) and magnetic susceptibility measures; and 2) six topographic variables: elevation, slope, aspect, hydrological accumulated flux, horizontal curvature and vertical curvature. It is characterized at 304 locations from a quasi-regular grid spaced about 24\u00a0km across the state of Paran\u00e1. This data base was split into two subsets: one for analysis and modeling (274 samples) and the other for validation (30 samples) purposes. The self-organizing map and clustering methods were used to identify and classify the relations among solid-phase chemical element concentrations and GIS derived topographic models. The correlation between elevation and k-means clusters related the relative position inside hydrologic macro basins, which was interpreted as an expression of the weathering process reaching a steady-state condition at the regional scale. Locally, the chemical element concentrations were related to the vertical curvature representing concave\u2013convex hillslope features, where concave hillslopes with convergent flux tends to be a reducing environment and convex hillslopes with divergent flux, oxidizing environments. Stochastic cross validation demonstrated that the SOM produced unbiased classifications and quantified the relative amount of uncertainty in predictions. This work strengthens the hypothesis that, at B-horizon steady-state conditions, the terrain morphometry were linked with the soil geochemical weathering in a two-way dependent process: the topographic relief was a factor on environmental geochemistry while chemical weathering was for terrain feature delineation.", "description": "9 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Filho, Carlos Roberto de Souza", "givenName": "Carlos Roberto de Souza", "familyName": "Filho" }, { "@type": "Person", "name": "Fraser, Stephen J.", "givenName": "Stephen J.", "familyName": "Fraser" }, { "@type": "Person", "name": "Friedel, Michael J. mfriedel@usgs.gov", "givenName": "Michael J.", "familyName": "Friedel", "email": "mfriedel@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5060-3999", "url": "https://orcid.org/0000-0002-5060-3999" }, "affiliation": [ { "@type": "Organization", "name": "Central Mineral and Environmental Resources Science Center", "url": "https://www.usgs.gov/centers/gggsc" } ] }, { "@type": "Person", "name": "Iwashita, Fabio", "givenName": "Fabio", "familyName": "Iwashita" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "Brazil", "url": "https://geonames.org/4254884" }, { "@type": "Place", "additionalType": "state", "name": "Parana" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -54.58007812499999, -26.391869671769022 ], [ -54.58007812499999, -22.45164881912619 ], [ -47.9443359375, -22.45164881912619 ], [ -47.9443359375, -26.391869671769022 ], [ -54.58007812499999, -26.391869671769022 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": -24.421759245447607, "longitude": -51.26220703125001 } ] } ] }, "OpenAlex": { "abstract_inverted_index": { "Self-organizing": [ 0 ], "map": [ 1, 136 ], "(SOM)": [ 2 ], "and": [ 3, 25, 70, 72, 76, 89, 122, 126, 137, 144, 153, 162, 218, 236 ], "geographic": [ 4 ], "information": [ 5 ], "system": [ 6 ], "(GIS)": [ 7 ], "models": [ 8 ], "were": [ 9, 140, 196, 258 ], "used": [ 10, 141 ], "to": [ 11, 142, 198, 213 ], "investigate": [ 12 ], "the": [ 13, 107, 127, 146, 166, 180, 188, 192, 199, 231, 238, 248, 255, 261, 270 ], "nonlinear": [ 14 ], "relationships": [ 15 ], "associated": [ 16 ], "with": [ 17, 209, 221, 260 ], "geochemical": [ 18, 263 ], "weathering": [ 19, 181, 264, 281 ], "processes": [ 20 ], "at": [ 21, 95, 187, 251 ], "local": [ 22 ], "(~100": [ 23 ], "km2)": [ 24, 28 ], "regional": [ 26, 189 ], "(~50,000": [ 27 ], "scales.": [ 29 ], "The": [ 30, 134, 158 ], "data": [ 31, 112 ], "set": [ 32 ], "consisted": [ 33 ], "of": [ 34, 54, 109, 179, 241 ], "1)": [ 35 ], "22": [ 36 ], "B-horizon": [ 37, 252 ], "soil": [ 38, 262 ], "variables:": [ 39, 80 ], "P,": [ 40 ], "C,": [ 41 ], "pH,": [ 42 ], "Al,": [ 43 ], "total": [ 44, 49 ], "acidity,": [ 45 ], "Ca,": [ 46 ], "Mg,": [ 47 ], "K,": [ 48 ], "cation": [ 50 ], "exchange": [ 51 ], "capacity,": [ 52 ], "sum": [ 53 ], "exchangeable": [ 55 ], "bases,": [ 56 ], "base": [ 57, 113 ], "saturation,": [ 58 ], "Cu,": [ 59 ], "Zn,": [ 60 ], "Fe,": [ 61 ], "B,": [ 62 ], "S,": [ 63 ], "Mn,": [ 64 ], "gammaspectrometry": [ 65 ], "(total": [ 66 ], "count,": [ 67 ], "potassium,": [ 68 ], "thorium,": [ 69 ], "uranium)": [ 71 ], "magnetic": [ 73 ], "susceptibility": [ 74 ], "measures;": [ 75 ], "2)": [ 77 ], "six": [ 78 ], "topographic": [ 79, 156, 271 ], "elevation,": [ 81 ], "slope,": [ 82 ], "aspect,": [ 83 ], "hydrological": [ 84 ], "accumulated": [ 85 ], "flux,": [ 86, 223 ], "horizontal": [ 87 ], "curvature": [ 88, 201 ], "vertical": [ 90, 200 ], "curvature.": [ 91 ], "It": [ 92 ], "is": [ 93 ], "characterized": [ 94 ], "304": [ 96 ], "locations": [ 97 ], "from": [ 98 ], "a": [ 99, 184, 215, 266, 274 ], "quasi-regular": [ 100 ], "grid": [ 101 ], "spaced": [ 102 ], "about": [ 103 ], "24": [ 104 ], "km": [ 105 ], "across": [ 106 ], "state": [ 108 ], "Paran\u00e1.": [ 110 ], "This": [ 111, 245 ], "was": [ 114, 174, 273, 282 ], "split": [ 115 ], "into": [ 116 ], "two": [ 117 ], "subsets:": [ 118 ], "one": [ 119 ], "for": [ 120, 129, 283 ], "analysis": [ 121 ], "modeling": [ 123 ], "(274": [ 124 ], "samples)": [ 125, 132 ], "other": [ 128 ], "validation": [ 130, 228 ], "(30": [ 131 ], "purposes.": [ 133 ], "self-organizing": [ 135 ], "clustering": [ 138 ], "methods": [ 139 ], "identify": [ 143 ], "classify": [ 145 ], "relations": [ 147 ], "among": [ 148 ], "solid-phase": [ 149 ], "chemical": [ 150, 193, 280 ], "element": [ 151, 194 ], "concentrations": [ 152, 195 ], "GIS": [ 154 ], "derived": [ 155 ], "models.": [ 157 ], "correlation": [ 159 ], "between": [ 160 ], "elevation": [ 161 ], "k-means": [ 163 ], "clusters": [ 164 ], "related": [ 165, 197 ], "relative": [ 167, 239 ], "position": [ 168 ], "inside": [ 169 ], "hydrologic": [ 170 ], "macro": [ 171 ], "basins,": [ 172 ], "which": [ 173 ], "interpreted": [ 175 ], "as": [ 176 ], "an": [ 177 ], "expression": [ 178 ], "process": [ 182 ], "reaching": [ 183 ], "steady-state": [ 185, 253 ], "condition": [ 186 ], "scale.": [ 190 ], "Locally,": [ 191 ], "representing": [ 202 ], "concave\u2013convex": [ 203 ], "hillslope": [ 204 ], "features,": [ 205 ], "where": [ 206 ], "concave": [ 207 ], "hillslopes": [ 208, 220 ], "convergent": [ 210 ], "flux": [ 211 ], "tends": [ 212 ], "be": [ 214 ], "reducing": [ 216 ], "environment": [ 217 ], "convex": [ 219 ], "divergent": [ 222 ], "oxidizing": [ 224 ], "environments.": [ 225 ], "Stochastic": [ 226 ], "cross": [ 227 ], "demonstrated": [ 229 ], "that": [ 230 ], "SOM": [ 232 ], "produced": [ 233 ], "unbiased": [ 234 ], "classifications": [ 235 ], "quantified": [ 237 ], "amount": [ 240 ], "uncertainty": [ 242 ], "in": [ 243, 265 ], "predictions.": [ 244 ], "work": [ 246 ], "strengthens": [ 247 ], "hypothesis": [ 249 ], "that,": [ 250 ], "conditions,": [ 254 ], "terrain": [ 256, 284 ], "morphometry": [ 257 ], "linked": [ 259 ], "two-way": [ 267 ], "dependent": [ 268 ], "process:": [ 269 ], "relief": [ 272 ], "factor": [ 275 ], "on": [ 276 ], "environmental": [ 277 ], "geochemistry": [ 278 ], "while": [ 279 ], "feature": [ 285 ], "delineation.": [ 286 ] }, "apc_list": { "value": 3300, "currency": "USD", "value_usd": 3300, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5051648310", "display_name": "F\u00e1bio Iwashita", "orcid": null }, "institutions": [], "countries": [ "BR" ], "is_corresponding": false, "raw_author_name": "Fabio Iwashita", "raw_affiliation_strings": [ "Geosciences Institute, Campinas University, Brazil" ], "affiliations": [ { "raw_affiliation_string": "Geosciences Institute, Campinas University, Brazil", "institution_ids": [] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5072987362", "display_name": "Michael J. Friedel", "orcid": "https://orcid.org/0000-0003-2357-6523" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Michael J. Friedel", "raw_affiliation_strings": [ "Crustal Geophysics and Geochemistry Science Center, U.S. Geological Survey, Denver, CO, United States" ], "affiliations": [ { "raw_affiliation_string": "Crustal Geophysics and Geochemistry Science Center, U.S. Geological Survey, Denver, CO, United States", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5064671739", "display_name": "Carlos Roberto de Souza Filho", "orcid": "https://orcid.org/0000-0001-5366-3439" }, "institutions": [], "countries": [ "BR" ], "is_corresponding": false, "raw_author_name": "Carlos Roberto de Souza Filho", "raw_affiliation_strings": [ "Geosciences Institute, Campinas University, Brazil" ], "affiliations": [ { "raw_affiliation_string": "Geosciences Institute, Campinas University, Brazil", "institution_ids": [] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5091787126", "display_name": "Stephen Fraser", "orcid": "https://orcid.org/0000-0002-0856-5300" }, "institutions": [ { "id": "https://openalex.org/I1292875679", "display_name": "Commonwealth Scientific and Industrial Research Organisation", "ror": "https://ror.org/03qn8fb07", "country_code": "AU", "type": "government", "lineage": [ "https://openalex.org/I1292875679", "https://openalex.org/I2801453606", "https://openalex.org/I4387156119" ] } ], "countries": [ "AU" ], "is_corresponding": false, "raw_author_name": "Stephen J. Fraser", "raw_affiliation_strings": [ "CSIRO Exploration and Mining, Brisbane, Australia" ], "affiliations": [ { "raw_affiliation_string": "CSIRO Exploration and Mining, Brisbane, Australia", "institution_ids": [ "https://openalex.org/I1292875679" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "132", "issue": "3-4", "first_page": "167", "last_page": "175" }, "citation_normalized_percentile": { "value": 0.933254, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2047718334", "cited_by_count": 17, "cited_by_percentile_year": { "min": 89, "max": 90 }, "concepts": [ { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.68231064 }, { "id": "https://openalex.org/C40724407", "wikidata": "https://www.wikidata.org/wiki/Q179177", "display_name": "Weathering", "level": 2, "score": 0.6309106 }, { "id": "https://openalex.org/C195065555", "wikidata": "https://www.wikidata.org/wiki/Q214881", "display_name": "Curvature", "level": 2, "score": 0.45485592 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 0.44819158 }, { "id": "https://openalex.org/C9930424", "wikidata": "https://www.wikidata.org/wiki/Q7426587", "display_name": "Saturation (graph theory)", "level": 2, "score": 0.43300626 }, { "id": "https://openalex.org/C159390177", "wikidata": "https://www.wikidata.org/wiki/Q9161265", "display_name": "Soil science", "level": 1, "score": 0.42425358 }, { "id": "https://openalex.org/C37054046", "wikidata": "https://www.wikidata.org/wiki/Q641888", "display_name": "Elevation (ballistics)", "level": 2, "score": 0.41963822 }, { "id": "https://openalex.org/C199289684", "wikidata": "https://www.wikidata.org/wiki/Q83353", "display_name": "Mineralogy", "level": 1, "score": 0.39009142 }, { "id": "https://openalex.org/C114793014", "wikidata": "https://www.wikidata.org/wiki/Q52109", "display_name": "Geomorphology", "level": 1, "score": 0.36247236 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 0.18126419 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.16346422 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 0.12605676 }, { "id": "https://openalex.org/C114614502", "wikidata": "https://www.wikidata.org/wiki/Q76592", "display_name": "Combinatorics", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 3, "counts_by_year": [ { "year": 2023, "cited_by_count": 1 }, { "year": 2022, "cited_by_count": 1 }, { "year": 2020, "cited_by_count": 1 }, { "year": 2017, "cited_by_count": 2 }, { "year": 2016, "cited_by_count": 2 }, { "year": 2015, "cited_by_count": 2 }, { "year": 2014, "cited_by_count": 2 }, { "year": 2013, "cited_by_count": 2 }, { "year": 2012, "cited_by_count": 3 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Hillslope chemical weathering across Paran\u00e1, Brazil: A data mining-GIS hybrid approach", "doi": "https://doi.org/10.1016/j.geomorph.2011.05.006", "fulltext_origin": "ngrams", "fwci": 3.35, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2047718334", "ids": { "openalex": "https://openalex.org/W2047718334", "doi": "https://doi.org/10.1016/j.geomorph.2011.05.006", "mag": "2047718334" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/digital-soil-mapping", "display_name": "Digital Soil Mapping", "score": 0.530001 }, { "id": "https://openalex.org/keywords/soil-properties", "display_name": "Soil Properties", "score": 0.514494 }, { "id": "https://openalex.org/keywords/global-soil-information", "display_name": "Global Soil Information", "score": 0.509007 }, { "id": "https://openalex.org/keywords/terrain-analysis", "display_name": "Terrain Analysis", "score": 0.504317 }, { "id": "https://openalex.org/keywords/saturation", "display_name": "Saturation (graph theory)", "score": 0.43300626 }, { "id": "https://openalex.org/keywords/elevation", "display_name": "Elevation (ballistics)", "score": 0.41963822 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.geomorph.2011.05.006", "pdf_url": null, "source": { "id": "https://openalex.org/S203530175", "display_name": "Geomorphology", "issn_l": "0169-555X", "issn": [ "0169-555X", "1872-695X" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2047718334/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.geomorph.2011.05.006", "pdf_url": null, "source": { "id": "https://openalex.org/S203530175", "display_name": "Geomorphology", "issn_l": "0169-555X", "issn": [ "0169-555X", "1872-695X" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9956, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2011-09-01", "publication_year": 2011, "referenced_works": [ "https://openalex.org/W129397100", "https://openalex.org/W1480646436", "https://openalex.org/W1557226949", "https://openalex.org/W1747840662", "https://openalex.org/W1973168692", "https://openalex.org/W1976936984", "https://openalex.org/W1979495695", "https://openalex.org/W1989814663", "https://openalex.org/W1991947100", "https://openalex.org/W2017496690", "https://openalex.org/W2027832294", "https://openalex.org/W2049440534", "https://openalex.org/W2052190449", "https://openalex.org/W2066592876", "https://openalex.org/W2069960279", "https://openalex.org/W2071402402", "https://openalex.org/W2110802877", "https://openalex.org/W2122450421", "https://openalex.org/W2145352471", "https://openalex.org/W2148712195", "https://openalex.org/W2151897820", "https://openalex.org/W2152540970", "https://openalex.org/W2153867406", "https://openalex.org/W2229509573", "https://openalex.org/W2745246776", "https://openalex.org/W2750884650", "https://openalex.org/W3017323153", "https://openalex.org/W3036192984", "https://openalex.org/W3128632218", "https://openalex.org/W3146425672", "https://openalex.org/W343727706", "https://openalex.org/W4251195514", "https://openalex.org/W4253040410", "https://openalex.org/W584025272", "https://openalex.org/W650204525" ], "referenced_works_count": 35, "related_works": [ "https://openalex.org/W3210069464", "https://openalex.org/W2760354675", "https://openalex.org/W2382305382", "https://openalex.org/W2362440746", "https://openalex.org/W2361519759", "https://openalex.org/W2353417286", "https://openalex.org/W2148142601", "https://openalex.org/W2046221681", "https://openalex.org/W164992045", "https://openalex.org/W1472256232" ], "sustainable_development_goals": [ { "display_name": "Life on land", "id": "https://metadata.un.org/sdg/15", "score": 0.73 } ], "title": "Hillslope chemical weathering across Paran\u00e1, Brazil: A data mining-GIS hybrid approach", "topics": [ { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9956, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12543", "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques", "score": 0.9885, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "score": 0.9884, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-13T10:50:30.992663", "versions": [] }
}