Item talk:Q246103

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70255881",
       "url": "https://pubs.usgs.gov/publication/70255881"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70255881
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.3390/rs4102890",
       "url": "https://doi.org/10.3390/rs4102890"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Remote Sensing",
     "volumeNumber": "4",
     "issueNumber": "10"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Remote Sensing"
     }
   ],
   "datePublished": "2012",
   "dateModified": "2024-07-09",
   "abstract": "The overarching goal of this research was to develop and demonstrate an automated Cropland Classification Algorithm (ACCA) that will rapidly, routinely, and accurately classify agricultural cropland extent, areas, and characteristics (e.g., irrigated\u00a0vs.\u00a0rainfed) over large areas such as a country or a region through combination of multi-sensor remote sensing and secondary data. In this research, a rule-based ACCA was conceptualized, developed, and demonstrated for the country of Tajikistan using mega file data cubes (MFDCs) involving data from Landsat Global Land Survey (GLS), Landsat Enhanced Thematic Mapper Plus (ETM+) 30 m, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m time-series, a suite of secondary data (e.g., elevation, slope, precipitation, temperature), and\u00a0in situ\u00a0data. First, the process involved producing an accurate reference (or truth) cropland layer (TCL), consisting of cropland extent, areas, and irrigated\u00a0vs.\u00a0rainfed cropland areas, for the entire country of Tajikistan based on MFDC of year 2005 (MFDC2005). The methods involved in producing TCL included using ISOCLASS clustering, Tasseled Cap bi-spectral plots, spectro-temporal characteristics from MODIS 250 m monthly normalized difference vegetation index (NDVI) maximum value composites (MVC) time-series, and textural characteristics of higher resolution imagery. The TCL statistics accurately matched with the national statistics of Tajikistan for irrigated and rainfed croplands, where about 70% of croplands were irrigated and the rest rainfed. Second, a rule-based ACCA was developed to replicate the TCL accurately (\u223c80% producer\u2019s and user\u2019s accuracies or within 20% quantity disagreement involving about 10 million Landsat 30 m sized cropland pixels of Tajikistan). Development of ACCA was an iterative process involving series of rules that are coded, refined, tweaked, and re-coded till ACCA derived croplands (ACLs) match accurately with TCLs. Third, the ACCA derived cropland layers of Tajikistan were produced for year 2005 (ACL2005), same year as the year used for developing ACCA, using MFDC2005. Fourth, TCL for year 2010 (TCL2010), an independent year, was produced using MFDC2010 using the same methods and approaches as the one used to produce TCL2005. Fifth, the ACCA was applied on MFDC2010 to derive ACL2010. The ACLs were then compared with TCLs (ACL2005\u00a0vs.\u00a0TCL2005 and ACL2010\u00a0vs.\u00a0TCL2010). The resulting accuracies and errors from error matrices involving about 152 million Landsat (30 m) pixels of the country of Tajikistan (of which about 10 million Landsat size, 30 m, cropland pixels) showed an overall accuracy of 99.6% (khat\u00a0= 0.97) for ACL2005\u00a0vs.\u00a0TCL2005. For the 3 classes (irrigated, rainfed, and others) mapped in ACL2005, the producer\u2019s accuracy was >86.4% and users accuracy was >93.6%. For ACL2010\u00a0vs.\u00a0TCL2010, the error matrix showed an overall accuracy on 96.2% (khat\u00a0= 0.96). For the 3 classes (irrigated, rainfed, and others) mapped in ACL2010, the producer\u2019s and user\u2019s accuracies for the irrigated areas were \u226582.9%. Any intermixing was overwhelmingly between irrigated and rainfed croplands, indicating that croplands (irrigated plus rainfed areas) as well as irrigated areas were mapped with high levels of accuracies (\u223c90% or higher) even for the independent year. The ACL2005 and ACL2010, each, were produced using ACCA algorithm in \u223c30 min using a Dell Precision desktop T7400 computer for the entire country of Tajikistan once the MFDCs for the years were ready. The ACCA algorithm for Tajikistan is made available through US Geological Survey\u2019s ScienceBase:\u00a0http://www.sciencebase.gov/catalog/folder/4f79f1b7e4b0009bd827f548\u00a0or at:\u00a0https://powellcenter.usgs.gov/globalcroplandwater/content/models-algorithms. The research contributes to the efforts of global food security through research on global croplands and their water use (e.g.,\u00a0https://powellcenter.usgs.gov/globalcroplandwater/). The above results clearly demonstrated the ability of a rule-based ACCA to rapidly and accurately produce cropland data layer year after year (hindcast, nowcast, forecast) for the country it was developed using MFDCs that consist of combining multiple sensor data and secondary data. It needs to be noted that the ACCA is applicable to the area (e.g., country, region) for which it is developed. In this case, ACCA is applicable for the Country of Tajikistan to hindcast, nowcast, and forecast agricultural cropland extent, areas, and irrigated\u00a0vs.\u00a0rainfed. The same fundamental concept of ACCA applies to other areas of the World where ACCA codes need to be modified to suite the area/region of interest. ACCA can also be expanded to compute other crop characteristics such as crop types, cropping intensities, and phenologies.",
   "description": "29 p.",
   "publisher": {
     "@type": "Organization",
     "name": "MDPI"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Thenkabail, Prasad S. pthenkabail@usgs.gov",
       "givenName": "Prasad S.",
       "familyName": "Thenkabail",
       "email": "pthenkabail@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-2182-8822",
         "url": "https://orcid.org/0000-0002-2182-8822"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Western Geographic Science Center",
           "url": "https://www.usgs.gov/centers/western-geographic-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Wu, Zhuoting zwu@usgs.gov",
       "givenName": "Zhuoting",
       "familyName": "Wu",
       "email": "zwu@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0001-7393-1832",
         "url": "https://orcid.org/0000-0001-7393-1832"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Office of Land Remote Sensing (Geography)",
           "url": "https://www.usgs.gov/mission-areas/ecosystems"
         },
         {
           "@type": "Organization",
           "name": "Western Geographic Science Center",
           "url": "https://www.usgs.gov/centers/western-geographic-science-center"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Flagstaff Science Center",
       "url": "https://www.usgs.gov/centers/southwest-biological-science-center"
     }
   ],
   "spatialCoverage": [
     {
       "@type": "Place",
       "additionalType": "country",
       "name": "Tajikistan"
     },
     {
       "@type": "Place",
       "geo": [
         {
           "@type": "GeoShape",
           "additionalProperty": {
             "@type": "PropertyValue",
             "name": "GeoJSON",
             "value": {
               "type": "FeatureCollection",
               "features": [
                 {
                   "type": "Feature",
                   "geometry": {
                     "type": "Polygon",
                     "coordinates": [
                       [
                         [
                           71.0142,
                           40.24437
                         ],
                         [
                           70.64802,
                           39.93575
                         ],
                         [
                           69.55961,
                           40.10321
                         ],
                         [
                           69.46489,
                           39.52668
                         ],
                         [
                           70.54916,
                           39.6042
                         ],
                         [
                           71.78469,
                           39.27946
                         ],
                         [
                           73.67538,
                           39.43124
                         ],
                         [
                           73.92885,
                           38.50582
                         ],
                         [
                           74.25751,
                           38.60651
                         ],
                         [
                           74.86482,
                           38.37885
                         ],
                         [
                           74.82999,
                           37.99001
                         ],
                         [
                           74.98,
                           37.41999
                         ],
                         [
                           73.9487,
                           37.42157
                         ],
                         [
                           73.26006,
                           37.49526
                         ],
                         [
                           72.63689,
                           37.04756
                         ],
                         [
                           72.19304,
                           36.94829
                         ],
                         [
                           71.84464,
                           36.73817
                         ],
                         [
                           71.44869,
                           37.06564
                         ],
                         [
                           71.54192,
                           37.90577
                         ],
                         [
                           71.2394,
                           37.95327
                         ],
                         [
                           71.34813,
                           38.25891
                         ],
                         [
                           70.80682,
                           38.48628
                         ],
                         [
                           70.3763,
                           38.1384
                         ],
                         [
                           70.27057,
                           37.73516
                         ],
                         [
                           70.11658,
                           37.58822
                         ],
                         [
                           69.51879,
                           37.609
                         ],
                         [
                           69.19627,
                           37.15114
                         ],
                         [
                           68.85945,
                           37.34434
                         ],
                         [
                           68.13556,
                           37.02312
                         ],
                         [
                           67.83,
                           37.14499
                         ],
                         [
                           68.39203,
                           38.15703
                         ],
                         [
                           68.17603,
                           38.90155
                         ],
                         [
                           67.44222,
                           39.14014
                         ],
                         [
                           67.70143,
                           39.58048
                         ],
                         [
                           68.53642,
                           39.53345
                         ],
                         [
                           69.01163,
                           40.08616
                         ],
                         [
                           69.32949,
                           40.72782
                         ],
                         [
                           70.66662,
                           40.96021
                         ],
                         [
                           70.45816,
                           40.49649
                         ],
                         [
                           70.60141,
                           40.21853
                         ],
                         [
                           71.0142,
                           40.24437
                         ]
                       ]
                     ]
                   },
                   "properties": {
                     "name": "Tajikistan"
                   }
                 }
               ]
             }
           }
         },
         {
           "@type": "GeoCoordinates",
           "latitude": 38.58308212970925,
           "longitude": 71.03443594091017
         }
       ]
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "The": [
       0,
       150,
       188,
       336,
       350,
       490,
       524,
       541,
       562,
       650
     ],
     "overarching": [
       1
     ],
     "goal": [
       2
     ],
     "of": [
       3,
       46,
       67,
       101,
       127,
       141,
       146,
       184,
       197,
       207,
       246,
       249,
       257,
       281,
       366,
       369,
       386,
       480,
       514,
       547,
       569,
       597,
       635,
       654,
       660,
       674
     ],
     "this": [
       4,
       54,
       627
     ],
     "research": [
       5,
       542,
       552
     ],
     "was": [
       6,
       59,
       219,
       251,
       309,
       329,
       409,
       414,
       456,
       591
     ],
     "to": [
       7,
       221,
       323,
       333,
       544,
       573,
       607,
       615,
       637,
       657,
       667,
       670,
       681
     ],
     "develop": [
       8
     ],
     "and": [
       9,
       21,
       28,
       50,
       62,
       109,
       131,
       181,
       201,
       211,
       228,
       264,
       317,
       346,
       353,
       401,
       411,
       438,
       445,
       460,
       492,
       556,
       575,
       602,
       640,
       646,
       692
     ],
     "demonstrate": [
       10
     ],
     "an": [
       11,
       118,
       252,
       306,
       383,
       424
     ],
     "automated": [
       12
     ],
     "Cropland": [
       13
     ],
     "Classification": [
       14
     ],
     "Algorithm": [
       15
     ],
     "(ACCA)": [
       16
     ],
     "that": [
       17,
       259,
       464,
       595,
       610
     ],
     "will": [
       18
     ],
     "rapidly,": [
       19
     ],
     "routinely,": [
       20
     ],
     "accurately": [
       22,
       191,
       225,
       272,
       576
     ],
     "classify": [
       23
     ],
     "agricultural": [
       24,
       642
     ],
     "cropland": [
       25,
       123,
       128,
       135,
       244,
       279,
       380,
       578,
       643
     ],
     "extent,": [
       26,
       129,
       644
     ],
     "areas,": [
       27,
       130,
       136,
       645
     ],
     "characteristics": [
       29,
       165,
       183,
       685
     ],
     "(e.g.,": [
       30,
       104,
       560,
       618
     ],
     "irrigated": [
       31,
       132,
       200,
       210,
       450,
       459,
       473,
       647
     ],
     "vs.": [
       32,
       133,
       344,
       348,
       393,
       418,
       648
     ],
     "rainfed)": [
       33
     ],
     "over": [
       34
     ],
     "large": [
       35
     ],
     "areas": [
       36,
       451,
       474,
       659
     ],
     "such": [
       37,
       686
     ],
     "as": [
       38,
       291,
       319,
       470,
       472,
       687
     ],
     "a": [
       39,
       42,
       56,
       99,
       216,
       504,
       570
     ],
     "country": [
       40,
       66,
       140,
       368,
       513,
       589
     ],
     "or": [
       41,
       231,
       483,
       538
     ],
     "region": [
       43
     ],
     "through": [
       44,
       532,
       551
     ],
     "combination": [
       45
     ],
     "multi-sensor": [
       47
     ],
     "remote": [
       48
     ],
     "sensing": [
       49
     ],
     "secondary": [
       51,
       102,
       603
     ],
     "data.": [
       52,
       112,
       604
     ],
     "In": [
       53,
       626
     ],
     "research,": [
       55
     ],
     "rule-based": [
       57,
       217,
       571
     ],
     "ACCA": [
       58,
       218,
       250,
       267,
       277,
       328,
       498,
       525,
       572,
       612,
       629,
       655,
       664,
       676
     ],
     "conceptualized,": [
       60
     ],
     "developed,": [
       61
     ],
     "demonstrated": [
       63,
       566
     ],
     "for": [
       64,
       137,
       199,
       285,
       295,
       302,
       391,
       448,
       486,
       510,
       519,
       527,
       587,
       621,
       632
     ],
     "the": [
       65,
       114,
       138,
       194,
       212,
       223,
       276,
       292,
       314,
       320,
       327,
       367,
       396,
       406,
       420,
       433,
       443,
       449,
       487,
       511,
       517,
       520,
       545,
       567,
       588,
       611,
       616,
       633,
       661,
       672
     ],
     "Tajikistan": [
       68,
       142,
       198,
       282,
       370,
       515,
       528,
       636
     ],
     "using": [
       69,
       157,
       298,
       311,
       313,
       497,
       503,
       593
     ],
     "mega": [
       70
     ],
     "file": [
       71
     ],
     "data": [
       72,
       76,
       103,
       579,
       601
     ],
     "cubes": [
       73
     ],
     "(MFDCs)": [
       74
     ],
     "involving": [
       75,
       236,
       255,
       358
     ],
     "from": [
       77,
       166,
       355
     ],
     "Landsat": [
       78,
       83,
       240,
       362,
       376
     ],
     "Global": [
       79
     ],
     "Land": [
       80
     ],
     "Survey": [
       81
     ],
     "(GLS),": [
       82
     ],
     "Enhanced": [
       84
     ],
     "Thematic": [
       85
     ],
     "Mapper": [
       86
     ],
     "Plus": [
       87
     ],
     "(ETM+)": [
       88
     ],
     "30": [
       89,
       241,
       378
     ],
     "m,": [
       90,
       379
     ],
     "Moderate": [
       91
     ],
     "Resolution": [
       92
     ],
     "Imaging": [
       93
     ],
     "Spectroradiometer": [
       94
     ],
     "(MODIS)": [
       95
     ],
     "250": [
       96,
       168
     ],
     "m": [
       97,
       169,
       242
     ],
     "time-series,": [
       98,
       180
     ],
     "suite": [
       100,
       671
     ],
     "elevation,": [
       105
     ],
     "slope,": [
       106
     ],
     "precipitation,": [
       107
     ],
     "temperature),": [
       108
     ],
     "in": [
       110,
       153,
       404,
       441,
       500
     ],
     "situ": [
       111
     ],
     "First,": [
       113
     ],
     "process": [
       115,
       254
     ],
     "involved": [
       116,
       152
     ],
     "producing": [
       117,
       154
     ],
     "accurate": [
       119
     ],
     "reference": [
       120
     ],
     "(or": [
       121
     ],
     "truth)": [
       122
     ],
     "layer": [
       124,
       580
     ],
     "(TCL),": [
       125
     ],
     "consisting": [
       126
     ],
     "rainfed": [
       134,
       202,
       461,
       468
     ],
     "entire": [
       139,
       512
     ],
     "based": [
       143
     ],
     "on": [
       144,
       331,
       427,
       553
     ],
     "MFDC": [
       145
     ],
     "year": [
       147,
       286,
       290,
       293,
       303,
       581,
       583
     ],
     "2005": [
       148,
       287
     ],
     "(MFDC2005).": [
       149
     ],
     "methods": [
       151,
       316
     ],
     "TCL": [
       155,
       189,
       224,
       301
     ],
     "included": [
       156
     ],
     "ISOCLASS": [
       158
     ],
     "clustering,": [
       159
     ],
     "Tasseled": [
       160
     ],
     "Cap": [
       161
     ],
     "bi-spectral": [
       162
     ],
     "plots,": [
       163
     ],
     "spectro-temporal": [
       164
     ],
     "MODIS": [
       167
     ],
     "monthly": [
       170
     ],
     "normalized": [
       171
     ],
     "difference": [
       172
     ],
     "vegetation": [
       173
     ],
     "index": [
       174
     ],
     "(NDVI)": [
       175
     ],
     "maximum": [
       176
     ],
     "value": [
       177
     ],
     "composites": [
       178
     ],
     "(MVC)": [
       179
     ],
     "textural": [
       182
     ],
     "higher": [
       185
     ],
     "resolution": [
       186
     ],
     "imagery.": [
       187
     ],
     "statistics": [
       190,
       196
     ],
     "matched": [
       192
     ],
     "with": [
       193,
       273,
       341,
       477
     ],
     "national": [
       195
     ],
     "croplands,": [
       203,
       462
     ],
     "where": [
       204,
       663
     ],
     "about": [
       205,
       237,
       359,
       373
     ],
     "70%": [
       206
     ],
     "croplands": [
       208,
       269,
       465,
       555
     ],
     "were": [
       209,
       283,
       338,
       452,
       475,
       495,
       522
     ],
     "rest": [
       213
     ],
     "rainfed.": [
       214,
       649
     ],
     "Second,": [
       215
     ],
     "developed": [
       220,
       592
     ],
     "replicate": [
       222
     ],
     "(~80%": [
       226
     ],
     "producer\u2019s": [
       227,
       407,
       444
     ],
     "user\u2019s": [
       229,
       446
     ],
     "accuracies": [
       230,
       352,
       447,
       481
     ],
     "within": [
       232
     ],
     "20%": [
       233
     ],
     "quantity": [
       234
     ],
     "disagreement": [
       235
     ],
     "10": [
       238,
       374
     ],
     "million": [
       239,
       361,
       375
     ],
     "sized": [
       243
     ],
     "pixels": [
       245,
       365
     ],
     "Tajikistan).": [
       247
     ],
     "Development": [
       248
     ],
     "iterative": [
       253
     ],
     "series": [
       256
     ],
     "rules": [
       258
     ],
     "are": [
       260
     ],
     "coded,": [
       261
     ],
     "refined,": [
       262
     ],
     "tweaked,": [
       263
     ],
     "re-coded": [
       265
     ],
     "till": [
       266
     ],
     "derived": [
       268,
       278
     ],
     "(ACLs)": [
       270
     ],
     "match": [
       271
     ],
     "TCLs.": [
       274
     ],
     "Third,": [
       275
     ],
     "layers": [
       280
     ],
     "produced": [
       284,
       310,
       496
     ],
     "(ACL2005),": [
       288
     ],
     "same": [
       289,
       315,
       651
     ],
     "used": [
       294,
       322
     ],
     "developing": [
       296
     ],
     "ACCA,": [
       297
     ],
     "MFDC2005.": [
       299
     ],
     "Fourth,": [
       300
     ],
     "2010": [
       304
     ],
     "(TCL2010),": [
       305
     ],
     "independent": [
       307,
       488
     ],
     "year,": [
       308
     ],
     "MFDC2010": [
       312,
       332
     ],
     "approaches": [
       318
     ],
     "one": [
       321
     ],
     "produce": [
       324,
       577
     ],
     "TCL2005.": [
       325,
       394
     ],
     "Fifth,": [
       326
     ],
     "applied": [
       330
     ],
     "derive": [
       334
     ],
     "ACL2010.": [
       335
     ],
     "ACLs": [
       337
     ],
     "then": [
       339
     ],
     "compared": [
       340
     ],
     "TCLs": [
       342
     ],
     "(ACL2005": [
       343
     ],
     "TCL2005": [
       345
     ],
     "ACL2010": [
       347,
       417
     ],
     "TCL2010).": [
       349
     ],
     "resulting": [
       351
     ],
     "errors": [
       354
     ],
     "error": [
       356,
       421
     ],
     "matrices": [
       357
     ],
     "152": [
       360
     ],
     "(30": [
       363
     ],
     "m)": [
       364
     ],
     "(of": [
       371
     ],
     "which": [
       372,
       622
     ],
     "size,": [
       377
     ],
     "pixels)": [
       381
     ],
     "showed": [
       382,
       423
     ],
     "overall": [
       384,
       425
     ],
     "accuracy": [
       385,
       408,
       413,
       426
     ],
     "99.6%": [
       387
     ],
     "(khat": [
       388,
       429
     ],
     "=": [
       389,
       430
     ],
     "0.97)": [
       390
     ],
     "ACL2005": [
       392,
       491
     ],
     "For": [
       395,
       416,
       432
     ],
     "3": [
       397,
       434
     ],
     "classes": [
       398,
       435
     ],
     "(irrigated,": [
       399,
       436
     ],
     "rainfed,": [
       400,
       437
     ],
     "others)": [
       402,
       439
     ],
     "mapped": [
       403,
       440,
       476
     ],
     "ACL2005,": [
       405
     ],
     ">86.4%": [
       410
     ],
     "users": [
       412
     ],
     ">93.6%.": [
       415
     ],
     "TCL2010,": [
       419
     ],
     "matrix": [
       422
     ],
     "96.2%": [
       428
     ],
     "0.96).": [
       431
     ],
     "ACL2010,": [
       442,
       493
     ],
     "\u226582.9%.": [
       453
     ],
     "Any": [
       454
     ],
     "intermixing": [
       455
     ],
     "overwhelmingly": [
       457
     ],
     "between": [
       458
     ],
     "indicating": [
       463
     ],
     "(irrigated": [
       466
     ],
     "plus": [
       467
     ],
     "areas)": [
       469
     ],
     "well": [
       471
     ],
     "high": [
       478
     ],
     "levels": [
       479
     ],
     "(~90%": [
       482
     ],
     "higher)": [
       484
     ],
     "even": [
       485
     ],
     "year.": [
       489
     ],
     "each,": [
       494
     ],
     "algorithm": [
       499,
       526
     ],
     "~30": [
       501
     ],
     "min": [
       502
     ],
     "Dell": [
       505
     ],
     "Precision": [
       506
     ],
     "desktop": [
       507
     ],
     "T7400": [
       508
     ],
     "computer": [
       509
     ],
     "once": [
       516
     ],
     "MFDCs": [
       518,
       594
     ],
     "years": [
       521
     ],
     "ready.": [
       523
     ],
     "is": [
       529,
       613,
       624,
       630
     ],
     "made": [
       530
     ],
     "available": [
       531
     ],
     "US": [
       533
     ],
     "Geological": [
       534
     ],
     "Survey\u2019s": [
       535
     ],
     "ScienceBase:": [
       536
     ],
     "http://www.sciencebase.gov/catalog/folder/4f79f1b7e4b0009bd827f548": [
       537
     ],
     "at:": [
       539
     ],
     "https://powellcenter.usgs.gov/globalcroplandwater/content/models-algorithms.": [
       540
     ],
     "contributes": [
       543
     ],
     "efforts": [
       546
     ],
     "global": [
       548,
       554
     ],
     "food": [
       549
     ],
     "security": [
       550
     ],
     "their": [
       557
     ],
     "water": [
       558
     ],
     "use": [
       559
     ],
     "https://powellcenter.usgs.gov/globalcroplandwater/).": [
       561
     ],
     "above": [
       563
     ],
     "results": [
       564
     ],
     "clearly": [
       565
     ],
     "ability": [
       568
     ],
     "rapidly": [
       574
     ],
     "after": [
       582
     ],
     "(hindcast,": [
       584
     ],
     "nowcast,": [
       585,
       639
     ],
     "forecast)": [
       586
     ],
     "it": [
       590,
       623
     ],
     "consist": [
       596
     ],
     "combining": [
       598
     ],
     "multiple": [
       599
     ],
     "sensor": [
       600
     ],
     "It": [
       605
     ],
     "needs": [
       606
     ],
     "be": [
       608,
       668,
       679
     ],
     "noted": [
       609
     ],
     "applicable": [
       614,
       631
     ],
     "area": [
       617
     ],
     "country,": [
       619
     ],
     "region)": [
       620
     ],
     "developed.": [
       625
     ],
     "case,": [
       628
     ],
     "Country": [
       634
     ],
     "hindcast,": [
       638
     ],
     "forecast": [
       641
     ],
     "fundamental": [
       652
     ],
     "concept": [
       653
     ],
     "applies": [
       656
     ],
     "other": [
       658,
       683
     ],
     "World": [
       662
     ],
     "codes": [
       665
     ],
     "need": [
       666
     ],
     "modified": [
       669
     ],
     "area/region": [
       673
     ],
     "interest.": [
       675
     ],
     "can": [
       677
     ],
     "also": [
       678
     ],
     "expanded": [
       680
     ],
     "compute": [
       682
     ],
     "crop": [
       684,
       688
     ],
     "types,": [
       689
     ],
     "cropping": [
       690
     ],
     "intensities,": [
       691
     ],
     "phenologies.": [
       693
     ]
   },
   "apc_list": {
     "value": 2500,
     "currency": "CHF",
     "value_usd": 2707,
     "provenance": "doaj"
   },
   "apc_paid": {
     "value": 2500,
     "currency": "CHF",
     "value_usd": 2707,
     "provenance": "doaj"
   },
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5039070473",
         "display_name": "Prasad S. Thenkabail",
         "orcid": "https://orcid.org/0000-0002-2182-8822"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I4210111045",
           "display_name": "Astrogeology Science Center",
           "ror": "https://ror.org/02623eb90",
           "country_code": "US",
           "type": "facility",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249",
             "https://openalex.org/I4210111045"
           ]
         },
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": true,
       "raw_author_name": "Prasad S. Thenkabail",
       "raw_affiliation_strings": [
         "Flagstaff Science Center, US Geological Survey, Flagstaff, AZ 86001, USA"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Flagstaff Science Center, US Geological Survey, Flagstaff, AZ 86001, USA",
           "institution_ids": [
             "https://openalex.org/I4210111045",
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5069487674",
         "display_name": "Zhuoting Wu",
         "orcid": "https://orcid.org/0000-0001-7393-1832"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I203172682",
           "display_name": "Northern Arizona University",
           "ror": "https://ror.org/0272j5188",
           "country_code": "US",
           "type": "education",
           "lineage": [
             "https://openalex.org/I203172682"
           ]
         },
         {
           "id": "https://openalex.org/I4210111045",
           "display_name": "Astrogeology Science Center",
           "ror": "https://ror.org/02623eb90",
           "country_code": "US",
           "type": "facility",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249",
             "https://openalex.org/I4210111045"
           ]
         },
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Zhuoting Wu",
       "raw_affiliation_strings": [
         "Flagstaff Science Center, US Geological Survey, Flagstaff, AZ 86001, USA",
         "Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86001, USA"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86001, USA",
           "institution_ids": [
             "https://openalex.org/I203172682"
           ]
         },
         {
           "raw_affiliation_string": "Flagstaff Science Center, US Geological Survey, Flagstaff, AZ 86001, USA",
           "institution_ids": [
             "https://openalex.org/I4210111045",
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.3390/rs4102890",
     "pdf_url": "https://www.mdpi.com/2072-4292/4/10/2890/pdf?version=1403131121",
     "source": {
       "id": "https://openalex.org/S43295729",
       "display_name": "Remote Sensing",
       "issn_l": "2072-4292",
       "issn": [
         "2072-4292"
       ],
       "is_oa": true,
       "is_in_doaj": true,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310310987",
       "host_organization_name": "Multidisciplinary Digital Publishing Institute",
       "host_organization_lineage": [
         "https://openalex.org/P4310310987"
       ],
       "host_organization_lineage_names": [
         "Multidisciplinary Digital Publishing Institute"
       ],
       "type": "journal"
     },
     "license": "cc-by",
     "license_id": "https://openalex.org/licenses/cc-by",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "biblio": {
     "volume": "4",
     "issue": "10",
     "first_page": "2890",
     "last_page": "2918"
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2058208710",
   "cited_by_count": 78,
   "cited_by_percentile_year": {
     "min": 97,
     "max": 98
   },
   "concepts": [
     {
       "id": "https://openalex.org/c2777007095",
       "wikidata": "https://www.wikidata.org/wiki/Q676840",
       "display_name": "Moderate-resolution imaging spectroradiometer",
       "level": 3,
       "score": 0.646597,
       "qid": null
     },
     {
       "id": "https://openalex.org/c62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 0.60450584,
       "qid": "Q158877"
     },
     {
       "id": "https://openalex.org/c39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 0.5900401,
       "qid": "Q166085"
     },
     {
       "id": "https://openalex.org/c2775938548",
       "wikidata": "https://www.wikidata.org/wiki/Q1565182",
       "display_name": "Thematic Mapper",
       "level": 3,
       "score": 0.5630244,
       "qid": null
     },
     {
       "id": "https://openalex.org/c1549246",
       "wikidata": "https://www.wikidata.org/wiki/Q718775",
       "display_name": "Normalized Difference Vegetation Index",
       "level": 3,
       "score": 0.49129695,
       "qid": null
     },
     {
       "id": "https://openalex.org/c93692415",
       "wikidata": "https://www.wikidata.org/wiki/Q1502030",
       "display_name": "Thematic map",
       "level": 2,
       "score": 0.47850624,
       "qid": null
     },
     {
       "id": "https://openalex.org/c11413529",
       "wikidata": "https://www.wikidata.org/wiki/Q8366",
       "display_name": "Algorithm",
       "level": 1,
       "score": 0.33240902,
       "qid": "Q226190"
     },
     {
       "id": "https://openalex.org/c205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 0.28405535,
       "qid": "Q158983"
     },
     {
       "id": "https://openalex.org/c58640448",
       "wikidata": "https://www.wikidata.org/wiki/Q42515",
       "display_name": "Cartography",
       "level": 1,
       "score": 0.22890875,
       "qid": "Q158966"
     },
     {
       "id": "https://openalex.org/c33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 0.20647451,
       "qid": "Q161189"
     },
     {
       "id": "https://openalex.org/c2778102629",
       "wikidata": "https://www.wikidata.org/wiki/Q725252",
       "display_name": "Satellite imagery",
       "level": 2,
       "score": 0.1917347,
       "qid": null
     },
     {
       "id": "https://openalex.org/c127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.15168768,
       "qid": "Q158984"
     },
     {
       "id": "https://openalex.org/c132651083",
       "wikidata": "https://www.wikidata.org/wiki/Q7942",
       "display_name": "Climate change",
       "level": 2,
       "score": 0.13496387,
       "qid": "Q169118"
     },
     {
       "id": "https://openalex.org/c19269812",
       "wikidata": "https://www.wikidata.org/wiki/Q26540",
       "display_name": "Satellite",
       "level": 2,
       "score": 0.13447708,
       "qid": null
     },
     {
       "id": "https://openalex.org/c111368507",
       "wikidata": "https://www.wikidata.org/wiki/Q43518",
       "display_name": "Oceanography",
       "level": 1,
       "score": 0.0,
       "qid": "Q166123"
     },
     {
       "id": "https://openalex.org/c127413603",
       "wikidata": "https://www.wikidata.org/wiki/Q11023",
       "display_name": "Engineering",
       "level": 0,
       "score": 0.0,
       "qid": "Q158977"
     },
     {
       "id": "https://openalex.org/c146978453",
       "wikidata": "https://www.wikidata.org/wiki/Q3798668",
       "display_name": "Aerospace engineering",
       "level": 1,
       "score": 0.0,
       "qid": "Q166129"
     }
   ],
   "corresponding_author_ids": [
     "https://openalex.org/A5039070473"
   ],
   "corresponding_institution_ids": [
     "https://openalex.org/I4210111045",
     "https://openalex.org/I1286329397"
   ],
   "countries_distinct_count": 1,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 2
     },
     {
       "year": 2023,
       "cited_by_count": 4
     },
     {
       "year": 2022,
       "cited_by_count": 4
     },
     {
       "year": 2021,
       "cited_by_count": 4
     },
     {
       "year": 2020,
       "cited_by_count": 7
     },
     {
       "year": 2019,
       "cited_by_count": 10
     },
     {
       "year": 2018,
       "cited_by_count": 11
     },
     {
       "year": 2017,
       "cited_by_count": 9
     },
     {
       "year": 2016,
       "cited_by_count": 6
     },
     {
       "year": 2015,
       "cited_by_count": 11
     },
     {
       "year": 2014,
       "cited_by_count": 7
     },
     {
       "year": 2013,
       "cited_by_count": 1
     },
     {
       "year": 2012,
       "cited_by_count": 2
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data",
   "doi": "https://doi.org/10.3390/rs4102890",
   "fulltext_origin": "pdf",
   "fwci": 5.143,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W2058208710",
   "ids": {
     "openalex": "https://openalex.org/W2058208710",
     "doi": "https://doi.org/10.3390/rs4102890",
     "mag": "2058208710"
   },
   "indexed_in": [
     "crossref",
     "doaj"
   ],
   "institutions_distinct_count": 3,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/soil-evaluation",
       "display_name": "Soil Evaluation",
       "score": 0.527372
     },
     {
       "id": "https://openalex.org/keywords/crop-suitability",
       "display_name": "Crop Suitability",
       "score": 0.511172
     },
     {
       "id": "https://openalex.org/keywords/vegetation-monitoring",
       "display_name": "Vegetation Monitoring",
       "score": 0.507699
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": true,
       "landing_page_url": "https://doi.org/10.3390/rs4102890",
       "pdf_url": "https://www.mdpi.com/2072-4292/4/10/2890/pdf?version=1403131121",
       "source": {
         "id": "https://openalex.org/S43295729",
         "display_name": "Remote Sensing",
         "issn_l": "2072-4292",
         "issn": [
           "2072-4292"
         ],
         "is_oa": true,
         "is_in_doaj": true,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310310987",
         "host_organization_name": "Multidisciplinary Digital Publishing Institute",
         "host_organization_lineage": [
           "https://openalex.org/P4310310987"
         ],
         "host_organization_lineage_names": [
           "Multidisciplinary Digital Publishing Institute"
         ],
         "type": "journal"
       },
       "license": "cc-by",
       "license_id": "https://openalex.org/licenses/cc-by",
       "version": "publishedVersion",
       "is_accepted": true,
       "is_published": true
     },
     {
       "is_oa": false,
       "landing_page_url": "https://doaj.org/article/1469a5fd8d5346e3be1c1e6118227688",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S4306401280",
         "display_name": "DOAJ (DOAJ: Directory of Open Access Journals)",
         "issn_l": null,
         "issn": null,
         "is_oa": true,
         "is_in_doaj": false,
         "is_core": false,
         "host_organization": null,
         "host_organization_name": null,
         "host_organization_lineage": [],
         "host_organization_lineage_names": [],
         "type": "repository"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 2,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W2058208710/ngrams",
   "open_access": {
     "is_oa": true,
     "oa_status": "gold",
     "oa_url": "https://www.mdpi.com/2072-4292/4/10/2890/pdf?version=1403131121",
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.3390/rs4102890",
     "pdf_url": "https://www.mdpi.com/2072-4292/4/10/2890/pdf?version=1403131121",
     "source": {
       "id": "https://openalex.org/S43295729",
       "display_name": "Remote Sensing",
       "issn_l": "2072-4292",
       "issn": [
         "2072-4292"
       ],
       "is_oa": true,
       "is_in_doaj": true,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310310987",
       "host_organization_name": "Multidisciplinary Digital Publishing Institute",
       "host_organization_lineage": [
         "https://openalex.org/P4310310987"
       ],
       "host_organization_lineage_names": [
         "Multidisciplinary Digital Publishing Institute"
       ],
       "type": "journal"
     },
     "license": "cc-by",
     "license_id": "https://openalex.org/licenses/cc-by",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "primary_topic": {
     "id": "https://openalex.org/T10111",
     "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
     "score": 0.9989,
     "subfield": {
       "id": "https://openalex.org/subfields/2303",
       "display_name": "Ecology"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2012-09-25",
   "publication_year": 2012,
   "referenced_works": [
     "https://openalex.org/W120907723",
     "https://openalex.org/W1543713962",
     "https://openalex.org/W1554230853",
     "https://openalex.org/W1838764073",
     "https://openalex.org/W1971364019",
     "https://openalex.org/W1975248810",
     "https://openalex.org/W1980102245",
     "https://openalex.org/W1985690611",
     "https://openalex.org/W1993067542",
     "https://openalex.org/W1993438172",
     "https://openalex.org/W1993585210",
     "https://openalex.org/W2004201407",
     "https://openalex.org/W2013414890",
     "https://openalex.org/W2019232777",
     "https://openalex.org/W2019323988",
     "https://openalex.org/W2027475314",
     "https://openalex.org/W2030165874",
     "https://openalex.org/W2034803951",
     "https://openalex.org/W2051790662",
     "https://openalex.org/W2055248879",
     "https://openalex.org/W2058208710",
     "https://openalex.org/W2061460644",
     "https://openalex.org/W2062321700",
     "https://openalex.org/W2072305677",
     "https://openalex.org/W2076186394",
     "https://openalex.org/W2099507093",
     "https://openalex.org/W2104896032",
     "https://openalex.org/W2108493207",
     "https://openalex.org/W2112341432",
     "https://openalex.org/W2117287899",
     "https://openalex.org/W2117706739",
     "https://openalex.org/W2121025662",
     "https://openalex.org/W2127559745",
     "https://openalex.org/W2131448468",
     "https://openalex.org/W2133941557",
     "https://openalex.org/W2145862305",
     "https://openalex.org/W2146497894",
     "https://openalex.org/W2155289042",
     "https://openalex.org/W2164287959",
     "https://openalex.org/W2164943663",
     "https://openalex.org/W2165954860",
     "https://openalex.org/W2168692799",
     "https://openalex.org/W2169526039",
     "https://openalex.org/W2180682969",
     "https://openalex.org/W2182845082",
     "https://openalex.org/W2315702301",
     "https://openalex.org/W2506799294",
     "https://openalex.org/W4245539475"
   ],
   "referenced_works_count": 48,
   "related_works": [
     "https://openalex.org/W4248135582",
     "https://openalex.org/W3179380983",
     "https://openalex.org/W2167839896",
     "https://openalex.org/W2154575317",
     "https://openalex.org/W2117472775",
     "https://openalex.org/W2116416258",
     "https://openalex.org/W2037185301",
     "https://openalex.org/W2031110213",
     "https://openalex.org/W1999068520",
     "https://openalex.org/W1985542561"
   ],
   "sustainable_development_goals": [
     {
       "id": "https://metadata.un.org/sdg/2",
       "score": 0.43,
       "display_name": "Zero hunger"
     }
   ],
   "title": "An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data",
   "topics": [
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "score": 0.9989,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "score": 0.9852,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13058",
       "display_name": "Land-Use Suitability Assessment Using GIS",
       "score": 0.968,
       "subfield": {
         "id": "https://openalex.org/subfields/2308",
         "display_name": "Management, Monitoring, Policy and Law"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-06T10:16:52.951620",
   "versions": [],
   "qid": null
 }

}