Item talk:Q243571
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "An automated cross-correlation based event detection technique and its application to surface passive data set", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70047615", "url": "https://pubs.usgs.gov/publication/70047615" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70047615 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1111/1365-2478.12033", "url": "https://doi.org/10.1111/1365-2478.12033" } ], "journal": { "@type": "Periodical", "name": "Geophysical Prospecting", "volumeNumber": "61", "issueNumber": "4" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Geophysical Prospecting" } ], "datePublished": "2013", "dateModified": "2013-08-15", "abstract": "In studies on heavy oil, shale reservoirs, tight gas and enhanced geothermal systems, the use of surface passive seismic data to monitor induced microseismicity due to the fluid flow in the subsurface is becoming more common. However, in most studies passive seismic records contain days and months of data and manually analysing the data can be expensive and inaccurate. Moreover, in the presence of noise, detecting the arrival of weak microseismic events becomes challenging. Hence, the use of an automated, accurate and computationally fast technique for event detection in passive seismic data is essential. The conventional automatic event identification algorithm computes a running-window energy ratio of the short-term average to the long-term average of the passive seismic data for each trace. We show that for the common case of a low signal-to-noise ratio in surface passive records, the conventional method is not sufficiently effective at event identification. Here, we extend the conventional algorithm by introducing a technique that is based on the cross-correlation of the energy ratios computed by the conventional method. With our technique we can measure the similarities amongst the computed energy ratios at different traces. Our approach is successful at improving the detectability of events with a low signal-to-noise ratio that are not detectable with the conventional algorithm. Also, our algorithm has the advantage to identify if an event is common to all stations (a regional event) or to a limited number of stations (a local event). We provide examples of applying our technique to synthetic data and a field surface passive data set recorded at a geothermal site.", "description": "10 p.", "publisher": { "@type": "Organization", "name": "Wiley" }, "author": [ { "@type": "Person", "name": "Haines, Seth S. shaines@usgs.gov", "givenName": "Seth S.", "familyName": "Haines", "email": "shaines@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-2611-8165", "url": "https://orcid.org/0000-0003-2611-8165" }, "affiliation": [ { "@type": "Organization", "name": "Central Energy Resources Science Center", "url": "https://www.usgs.gov/centers/central-energy-resources-science-center" }, { "@type": "Organization", "name": "Colorado Water Science Center", "url": "https://www.usgs.gov/centers/colorado-water-science-center" }, { "@type": "Organization", "name": "Energy Resources Program", "url": "https://www.usgs.gov/programs/energy-resources-program" } ] }, { "@type": "Person", "name": "Forghani-Arani, Farnoush", "givenName": "Farnoush", "familyName": "Forghani-Arani" }, { "@type": "Person", "name": "Batzle, Mike", "givenName": "Mike", "familyName": "Batzle" }, { "@type": "Person", "name": "Behura, Jyoti", "givenName": "Jyoti", "familyName": "Behura" } ], "funder": [ { "@type": "Organization", "name": "Central Energy Resources Science Center", "url": "https://www.usgs.gov/centers/central-energy-resources-science-center" } ] }, "OpenAlex": { "abstract_inverted_index": { "ABSTRACT": [ 0 ], "In": [ 1 ], "studies": [ 2, 40 ], "on": [ 3, 161 ], "heavy": [ 4 ], "oil,": [ 5 ], "shale": [ 6 ], "reservoirs,": [ 7 ], "tight": [ 8 ], "gas": [ 9 ], "and": [ 10, 46, 50, 58, 82, 251 ], "enhanced": [ 11 ], "geothermal": [ 12, 261 ], "systems,": [ 13 ], "the": [ 14, 27, 31, 53, 62, 67, 76, 107, 111, 115, 126, 138, 151, 162, 165, 170, 179, 182, 195, 209, 216 ], "use": [ 15, 77 ], "of": [ 16, 48, 64, 69, 78, 106, 114, 129, 164, 197, 236, 244 ], "surface": [ 17, 135, 254 ], "passive": [ 18, 41, 90, 116, 136, 255 ], "seismic": [ 19, 42, 91, 117 ], "data": [ 20, 49, 54, 92, 118, 250, 256 ], "to": [ 21, 26, 110, 218, 225, 232, 248 ], "monitor": [ 22 ], "induced": [ 23 ], "microseismicity": [ 24 ], "due": [ 25 ], "fluid": [ 28 ], "flow": [ 29 ], "in": [ 30, 38, 61, 89, 134 ], "subsurface": [ 32 ], "is": [ 33, 93, 141, 159, 191, 223 ], "becoming": [ 34 ], "more": [ 35 ], "common.": [ 36 ], "However,": [ 37 ], "most": [ 39 ], "records": [ 43 ], "contain": [ 44 ], "days": [ 45 ], "months": [ 47 ], "manually": [ 51 ], "analysing": [ 52 ], "can": [ 55, 177 ], "be": [ 56 ], "expensive": [ 57 ], "inaccurate.": [ 59 ], "Moreover,": [ 60 ], "presence": [ 63 ], "noise,": [ 65 ], "detecting": [ 66 ], "arrival": [ 68 ], "weak": [ 70 ], "microseismic": [ 71 ], "events": [ 72, 198 ], "becomes": [ 73 ], "challenging.": [ 74 ], "Hence,": [ 75 ], "an": [ 79, 221 ], "automated,": [ 80 ], "accurate": [ 81 ], "computationally": [ 83 ], "fast": [ 84 ], "technique": [ 85, 157, 175, 247 ], "for": [ 86, 119, 125 ], "event": [ 87, 98, 146, 222 ], "detection": [ 88 ], "essential.": [ 94 ], "The": [ 95 ], "conventional": [ 96, 139, 152, 171, 210 ], "automatic": [ 97 ], "identification": [ 99 ], "algorithm": [ 100, 153, 214 ], "computes": [ 101 ], "a": [ 102, 130, 156, 200, 233, 252, 260 ], "running\u2010window": [ 103 ], "energy": [ 104, 166, 184 ], "ratio": [ 105, 133, 203 ], "short\u2010term": [ 108 ], "average": [ 109, 113 ], "long\u2010term": [ 112 ], "each": [ 120 ], "trace.": [ 121 ], "We": [ 122, 241 ], "show": [ 123 ], "that": [ 124, 158, 204 ], "common": [ 127, 224 ], "case": [ 128 ], "low": [ 131, 201 ], "signal\u2010to\u2010noise": [ 132, 202 ], "records,": [ 137 ], "method": [ 140 ], "not": [ 142, 206 ], "sufficiently": [ 143 ], "effective": [ 144 ], "at": [ 145, 186, 193, 259 ], "identification.": [ 147 ], "Here,": [ 148 ], "we": [ 149, 176 ], "extend": [ 150 ], "by": [ 154, 169 ], "introducing": [ 155 ], "based": [ 160 ], "cross\u2010correlation": [ 163 ], "ratios": [ 167, 185 ], "computed": [ 168, 183 ], "method.": [ 172 ], "With": [ 173 ], "our": [ 174, 213, 246 ], "measure": [ 178 ], "similarities": [ 180 ], "amongst": [ 181 ], "different": [ 187 ], "traces.": [ 188 ], "Our": [ 189 ], "approach": [ 190 ], "successful": [ 192 ], "improving": [ 194 ], "detectability": [ 196 ], "with": [ 199, 208 ], "are": [ 205 ], "detectable": [ 207 ], "algorithm.": [ 211 ], "Also,": [ 212 ], "has": [ 215 ], "advantage": [ 217 ], "identify": [ 219 ], "if": [ 220 ], "all": [ 226 ], "stations": [ 227, 237 ], "(a": [ 228, 238 ], "regional": [ 229 ], "event)": [ 230 ], "or": [ 231 ], "limited": [ 234 ], "number": [ 235 ], "local": [ 239 ], "event).": [ 240 ], "provide": [ 242 ], "examples": [ 243 ], "applying": [ 245 ], "synthetic": [ 249 ], "field": [ 253 ], "set": [ 257 ], "recorded": [ 258 ], "site.": [ 262 ] }, "apc_list": { "value": 3760, "currency": "USD", "value_usd": 3760, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5060247407", "display_name": "Farnoush Forghani\u2010Arani", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I167576493", "display_name": "Colorado School of Mines", "ror": "https://ror.org/04raf6v53", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I167576493" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Farnoush Forghani\u2010Arani", "raw_affiliation_strings": [ "Colorado School Of Mines" ], "affiliations": [ { "raw_affiliation_string": "Colorado School Of Mines", "institution_ids": [ "https://openalex.org/I167576493" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5063633815", "display_name": "Jyoti Behura", "orcid": "https://orcid.org/0000-0002-0488-6924" }, "institutions": [ { "id": "https://openalex.org/I167576493", "display_name": "Colorado School of Mines", "ror": "https://ror.org/04raf6v53", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I167576493" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Jyoti Behura", "raw_affiliation_strings": [ "Colorado School Of Mines" ], "affiliations": [ { "raw_affiliation_string": "Colorado School Of Mines", "institution_ids": [ "https://openalex.org/I167576493" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5060005699", "display_name": "Seth S. Haines", "orcid": "https://orcid.org/0000-0003-2611-8165" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Seth S. Haines", "raw_affiliation_strings": [ "U. S. Geological Survey#TAB#" ], "affiliations": [ { "raw_affiliation_string": "U. S. Geological Survey#TAB#", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5011418014", "display_name": "Michael Batzle", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I167576493", "display_name": "Colorado School of Mines", "ror": "https://ror.org/04raf6v53", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I167576493" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Mike Batzle", "raw_affiliation_strings": [ "Colorado School Of Mines" ], "affiliations": [ { "raw_affiliation_string": "Colorado School Of Mines", "institution_ids": [ "https://openalex.org/I167576493" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "61", "issue": "4", "first_page": "778", "last_page": "787" }, "citation_normalized_percentile": { "value": 0.910633, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1919412779", "cited_by_count": 12, "cited_by_percentile_year": { "min": 87, "max": 88 }, "concepts": [ { "id": "https://openalex.org/C2780942248", "wikidata": "https://www.wikidata.org/wiki/Q1048443", "display_name": "Passive seismic", "level": 2, "score": 0.6674301 }, { "id": "https://openalex.org/C7266685", "wikidata": "https://www.wikidata.org/wiki/Q1303250", "display_name": "Microseism", "level": 2, "score": 0.64705455 }, { "id": "https://openalex.org/C99498987", "wikidata": "https://www.wikidata.org/wiki/Q2210247", "display_name": "Noise (video)", "level": 3, "score": 0.5851486 }, { "id": "https://openalex.org/C2779662365", "wikidata": "https://www.wikidata.org/wiki/Q5416694", "display_name": "Event (particle physics)", "level": 2, "score": 0.5621338 }, { "id": "https://openalex.org/C186370098", "wikidata": "https://www.wikidata.org/wiki/Q442787", "display_name": "Energy (signal processing)", "level": 2, "score": 0.55986893 }, { "id": "https://openalex.org/C58489278", "wikidata": "https://www.wikidata.org/wiki/Q1172284", "display_name": "Data set", "level": 2, "score": 0.49909043 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.4760011 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.46199703 }, { "id": "https://openalex.org/C13944312", "wikidata": "https://www.wikidata.org/wiki/Q7512748", "display_name": "Signal-to-noise ratio (imaging)", "level": 2, "score": 0.45528257 }, { "id": "https://openalex.org/C11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 0.42143208 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.367263 }, { "id": "https://openalex.org/C165205528", "wikidata": "https://www.wikidata.org/wiki/Q83371", "display_name": "Seismology", "level": 1, "score": 0.34162325 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.17493835 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 0.12432405 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.10676941 }, { "id": "https://openalex.org/C76155785", "wikidata": "https://www.wikidata.org/wiki/Q418", "display_name": "Telecommunications", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C115961682", "wikidata": "https://www.wikidata.org/wiki/Q860623", "display_name": "Image (mathematics)", "level": 2, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2022, "cited_by_count": 2 }, { "year": 2020, "cited_by_count": 1 }, { "year": 2019, "cited_by_count": 2 }, { "year": 2018, "cited_by_count": 1 }, { "year": 2017, "cited_by_count": 1 }, { "year": 2016, "cited_by_count": 3 }, { "year": 2015, "cited_by_count": 1 }, { "year": 2014, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "An automated cross\u2010correlation based event detection technique and its application to a surface passive data set", "doi": "https://doi.org/10.1111/1365-2478.12033", "fulltext_origin": "ngrams", "fwci": 2.104, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W1919412779", "ids": { "openalex": "https://openalex.org/W1919412779", "doi": "https://doi.org/10.1111/1365-2478.12033", "mag": "1919412779" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/passive-seismic", "display_name": "Passive seismic", "score": 0.6674301 }, { "id": "https://openalex.org/keywords/microseism", "display_name": "Microseism", "score": 0.64705455 }, { "id": "https://openalex.org/keywords/seismic-data-processing", "display_name": "Seismic Data Processing", "score": 0.612324 }, { "id": "https://openalex.org/keywords/seismic-event-classification", "display_name": "Seismic Event Classification", "score": 0.56893 }, { "id": "https://openalex.org/keywords/real-time-seismology", "display_name": "Real-Time Seismology", "score": 0.567362 }, { "id": "https://openalex.org/keywords/ambient-seismic", "display_name": "Ambient Seismic", "score": 0.55931 }, { "id": "https://openalex.org/keywords/seismic-phase-picking", "display_name": "Seismic Phase Picking", "score": 0.558131 }, { "id": "https://openalex.org/keywords/data-set", "display_name": "Data set", "score": 0.49909043 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1111/1365-2478.12033", "pdf_url": null, "source": { "id": "https://openalex.org/S45030768", "display_name": "Geophysical Prospecting", "issn_l": "0016-8025", "issn": [ "0016-8025", "1365-2478" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320595", "host_organization_name": "Wiley", "host_organization_lineage": [ "https://openalex.org/P4310320595" ], "host_organization_lineage_names": [ "Wiley" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W1919412779/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1111/1365-2478.12033", "pdf_url": null, "source": { "id": "https://openalex.org/S45030768", "display_name": "Geophysical Prospecting", "issn_l": "0016-8025", "issn": [ "0016-8025", "1365-2478" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320595", "host_organization_name": "Wiley", "host_organization_lineage": [ "https://openalex.org/P4310320595" ], "host_organization_lineage_names": [ "Wiley" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T13018", "display_name": "Machine Learning for Earthquake Early Warning Systems", "score": 0.9998, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2013-02-27", "publication_year": 2013, "referenced_works": [ "https://openalex.org/W1532214277", "https://openalex.org/W1551397634", "https://openalex.org/W1582654070", "https://openalex.org/W1966725751", "https://openalex.org/W2002387161", "https://openalex.org/W2019764361", "https://openalex.org/W2068497595", "https://openalex.org/W2073960336", "https://openalex.org/W2098746595", "https://openalex.org/W2105333540", "https://openalex.org/W2108309279", "https://openalex.org/W2125185451", "https://openalex.org/W2132547391", "https://openalex.org/W2196415623", "https://openalex.org/W2528961483", "https://openalex.org/W2558051616", "https://openalex.org/W4285719527" ], "referenced_works_count": 17, "related_works": [ "https://openalex.org/W4386617227", "https://openalex.org/W3142169679", "https://openalex.org/W2225982925", "https://openalex.org/W2183362436", "https://openalex.org/W2172568484", "https://openalex.org/W2139459523", "https://openalex.org/W2091599148", "https://openalex.org/W2072105628", "https://openalex.org/W2065421246", "https://openalex.org/W2010148973" ], "sustainable_development_goals": [ { "score": 0.82, "id": "https://metadata.un.org/sdg/7", "display_name": "Affordable and clean energy" } ], "title": "An automated cross\u2010correlation based event detection technique and its application to a surface passive data set", "topics": [ { "id": "https://openalex.org/T13018", "display_name": "Machine Learning for Earthquake Early Warning Systems", "score": 0.9998, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10271", "display_name": "Seismic Waveform Inversion in Geophysics", "score": 0.9994, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11757", "display_name": "High-Resolution Seismic Noise Tomography", "score": 0.9991, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T03:25:24.854794", "versions": [] }
}