Item talk:Q243437

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "Semiautomated tremor detection using a combined cross-correlation and neural network approach",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70048198",
       "url": "https://pubs.usgs.gov/publication/70048198"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70048198
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1002/jgrb.50345",
       "url": "https://doi.org/10.1002/jgrb.50345"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Journal of Geophysical Research B: Solid Earth",
     "volumeNumber": "118",
     "issueNumber": "9"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Journal of Geophysical Research B: Solid Earth"
     }
   ],
   "datePublished": "2013",
   "dateModified": "2013-10-23",
   "abstract": "Despite observations of tectonic tremor in many locations around the globe, the emergent phase arrivals, low\u2012amplitude waveforms, and variable event durations make automatic detection a nontrivial task. In this study, we employ a new method to identify tremor in large data sets using a semiautomated technique. The method first reduces the data volume with an envelope cross\u2012correlation technique, followed by a Self\u2012Organizing Map (SOM) algorithm to identify and classify event types. The method detects tremor in an automated fashion after calibrating for a specific data set, hence we refer to it as being \u201csemiautomated\u201d. We apply the semiautomated detection algorithm to a newly acquired data set of waveforms from a temporary deployment of 13 seismometers near Cholame, California, from May 2010 to July 2011. We manually identify tremor events in a 3 week long test data set and compare to the SOM output and find a detection accuracy of 79.5%. Detection accuracy improves with increasing signal\u2012to\u2012noise ratios and number of available stations. We find detection completeness of 96% for tremor events with signal\u2012to\u2012noise ratios above 3 and optimal results when data from at least 10 stations are available. We compare the SOM algorithm to the envelope correlation method of Wech and Creager and find the SOM performs significantly better, at least for the data set examined here. Using the SOM algorithm, we detect 2606 tremor events with a cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the SOM algorithm is shown to be a flexible new method that utilizes characteristics of the waveforms to identify tremor from noise or other seismic signals.",
   "description": "20 p.",
   "publisher": {
     "@type": "Organization",
     "name": "American Geophysical Union"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Cochran, Elizabeth S. ecochran@usgs.gov",
       "givenName": "Elizabeth S.",
       "familyName": "Cochran",
       "email": "ecochran@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0003-2485-4484",
         "url": "https://orcid.org/0000-0003-2485-4484"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Earthquake Science Center",
           "url": "https://www.usgs.gov/centers/earthquake-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Horstmann, Tobias",
       "givenName": "Tobias",
       "familyName": "Horstmann"
     },
     {
       "@type": "Person",
       "name": "Harrington, Rebecca M.",
       "givenName": "Rebecca M.",
       "familyName": "Harrington"
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Earthquake Science Center",
       "url": "https://www.usgs.gov/centers/earthquake-science-center"
     }
   ],
   "spatialCoverage": [
     {
       "@type": "Place",
       "additionalType": "country",
       "name": "United States",
       "url": "https://geonames.org/4074035"
     },
     {
       "@type": "Place",
       "additionalType": "state",
       "name": "California"
     },
     {
       "@type": "Place",
       "additionalType": "unknown",
       "name": "Cholame",
       "url": "https://geonames.org/5336629"
     },
     {
       "@type": "Place",
       "geo": [
         {
           "@type": "GeoShape",
           "additionalProperty": {
             "@type": "PropertyValue",
             "name": "GeoJSON",
             "value": {
               "type": "FeatureCollection",
               "features": [
                 {
                   "type": "Feature",
                   "properties": {},
                   "geometry": {
                     "type": "Polygon",
                     "coordinates": [
                       [
                         [
                           -120.6,
                           35.6
                         ],
                         [
                           -120.6,
                           36.0
                         ],
                         [
                           -120.0,
                           36.0
                         ],
                         [
                           -120.0,
                           35.6
                         ],
                         [
                           -120.6,
                           35.6
                         ]
                       ]
                     ]
                   }
                 }
               ]
             }
           }
         },
         {
           "@type": "GeoCoordinates",
           "latitude": 35.79999999999999,
           "longitude": -120.30000000000001
         }
       ]
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "Despite": [
       0
     ],
     "observations": [
       1
     ],
     "of": [
       2,
       106,
       112,
       148,
       159,
       166,
       198,
       231,
       255
     ],
     "tectonic": [
       3
     ],
     "tremor": [
       4,
       37,
       74,
       127,
       169,
       224,
       260
     ],
     "in": [
       5,
       38,
       75,
       129
     ],
     "many": [
       6
     ],
     "locations": [
       7
     ],
     "around": [
       8
     ],
     "the": [
       9,
       11,
       50,
       96,
       140,
       190,
       194,
       204,
       212,
       218,
       236,
       241,
       256
     ],
     "globe,": [
       10
     ],
     "emergent": [
       12
     ],
     "phase": [
       13
     ],
     "arrivals,": [
       14
     ],
     "low\u2010amplitude": [
       15
     ],
     "waveforms,": [
       16
     ],
     "and": [
       17,
       67,
       137,
       143,
       157,
       176,
       200,
       202
     ],
     "variable": [
       18
     ],
     "event": [
       19,
       69
     ],
     "durations": [
       20
     ],
     "make": [
       21
     ],
     "automatic": [
       22
     ],
     "detection": [
       23,
       98,
       146,
       164
     ],
     "a": [
       24,
       32,
       43,
       60,
       82,
       101,
       109,
       130,
       145,
       227,
       248
     ],
     "nontrivial": [
       25
     ],
     "task.": [
       26
     ],
     "In": [
       27
     ],
     "this": [
       28
     ],
     "study,": [
       29
     ],
     "we": [
       30,
       87,
       221
     ],
     "employ": [
       31
     ],
     "new": [
       33,
       250
     ],
     "method": [
       34,
       47,
       72,
       197,
       251
     ],
     "to": [
       35,
       65,
       89,
       100,
       121,
       139,
       193,
       246,
       258
     ],
     "identify": [
       36,
       66,
       126,
       259
     ],
     "large": [
       39
     ],
     "data": [
       40,
       51,
       84,
       104,
       135,
       180,
       213
     ],
     "sets": [
       41
     ],
     "using": [
       42
     ],
     "semiautomated": [
       44,
       97
     ],
     "technique.": [
       45
     ],
     "The": [
       46,
       71
     ],
     "first": [
       48
     ],
     "reduces": [
       49
     ],
     "volume": [
       52
     ],
     "with": [
       53,
       153,
       171,
       226
     ],
     "an": [
       54,
       76
     ],
     "envelope": [
       55,
       195
     ],
     "cross\u2010correlation": [
       56
     ],
     "technique,": [
       57
     ],
     "followed": [
       58
     ],
     "by": [
       59
     ],
     "Self\u2010Organizing": [
       61
     ],
     "Map": [
       62
     ],
     "(SOM)": [
       63
     ],
     "algorithm": [
       64,
       99,
       192,
       243
     ],
     "classify": [
       68
     ],
     "types.": [
       70
     ],
     "detects": [
       73
     ],
     "automated": [
       77
     ],
     "fashion": [
       78
     ],
     "after": [
       79
     ],
     "calibrating": [
       80
     ],
     "for": [
       81,
       168,
       211
     ],
     "specific": [
       83
     ],
     "set,": [
       85
     ],
     "hence": [
       86
     ],
     "refer": [
       88
     ],
     "it": [
       90
     ],
     "as": [
       91
     ],
     "being": [
       92
     ],
     "\u201csemiautomated\u201d.": [
       93
     ],
     "We": [
       94,
       124,
       162,
       188
     ],
     "apply": [
       95
     ],
     "newly": [
       102
     ],
     "acquired": [
       103
     ],
     "set": [
       105,
       136,
       214
     ],
     "waveforms": [
       107,
       257
     ],
     "from": [
       108,
       118,
       181,
       261
     ],
     "temporary": [
       110
     ],
     "deployment": [
       111
     ],
     "13": [
       113,
       237
     ],
     "seismometers": [
       114
     ],
     "near": [
       115
     ],
     "Cholame,": [
       116
     ],
     "California,": [
       117
     ],
     "May": [
       119
     ],
     "2010": [
       120
     ],
     "July": [
       122
     ],
     "2011.": [
       123
     ],
     "manually": [
       125
     ],
     "events": [
       128,
       170,
       225
     ],
     "3": [
       131,
       175
     ],
     "week": [
       132
     ],
     "long": [
       133
     ],
     "test": [
       134
     ],
     "compare": [
       138,
       189
     ],
     "SOM": [
       141,
       191,
       205,
       219,
       242
     ],
     "output": [
       142
     ],
     "find": [
       144,
       163,
       203
     ],
     "accuracy": [
       147,
       151
     ],
     "79.5%.": [
       149
     ],
     "Detection": [
       150
     ],
     "improves": [
       152
     ],
     "increasing": [
       154
     ],
     "signal\u2010to\u2010noise": [
       155,
       172
     ],
     "ratios": [
       156,
       173
     ],
     "number": [
       158
     ],
     "available": [
       160
     ],
     "stations.": [
       161
     ],
     "completeness": [
       165
     ],
     "96%": [
       167
     ],
     "above": [
       174
     ],
     "optimal": [
       177
     ],
     "results": [
       178
     ],
     "when": [
       179
     ],
     "at": [
       182,
       209
     ],
     "least": [
       183,
       210
     ],
     "10": [
       184
     ],
     "stations": [
       185
     ],
     "are": [
       186
     ],
     "available.": [
       187
     ],
     "correlation": [
       196
     ],
     "Wech": [
       199
     ],
     "Creager": [
       201
     ],
     "performs": [
       206
     ],
     "significantly": [
       207
     ],
     "better,": [
       208
     ],
     "examined": [
       215
     ],
     "here.": [
       216
     ],
     "Using": [
       217
     ],
     "algorithm,": [
       220
     ],
     "detect": [
       222
     ],
     "2606": [
       223
     ],
     "cumulative": [
       228
     ],
     "signal": [
       229
     ],
     "duration": [
       230
     ],
     "nearly": [
       232
     ],
     "55": [
       233
     ],
     "h": [
       234
     ],
     "during": [
       235
     ],
     "month": [
       238
     ],
     "deployment.": [
       239
     ],
     "Overall,": [
       240
     ],
     "is": [
       244
     ],
     "shown": [
       245
     ],
     "be": [
       247
     ],
     "flexible": [
       249
     ],
     "that": [
       252
     ],
     "utilizes": [
       253
     ],
     "characteristics": [
       254
     ],
     "noise": [
       262
     ],
     "or": [
       263
     ],
     "other": [
       264
     ],
     "seismic": [
       265
     ],
     "signals.": [
       266
     ]
   },
   "apc_list": {
     "value": 3700,
     "currency": "USD",
     "value_usd": 3700,
     "provenance": "doaj"
   },
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5078981722",
         "display_name": "Tobias Horstmann",
         "orcid": null
       },
       "institutions": [
         {
           "id": "https://openalex.org/I102335020",
           "display_name": "Karlsruhe Institute of Technology",
           "ror": "https://ror.org/04t3en479",
           "country_code": "DE",
           "type": "education",
           "lineage": [
             "https://openalex.org/I102335020",
             "https://openalex.org/I1305996414"
           ]
         }
       ],
       "countries": [
         "DE"
       ],
       "is_corresponding": true,
       "raw_author_name": "T. Horstmann",
       "raw_affiliation_strings": [
         "Geophysical Institute Karlsruhe Institute of Technology  Karlsruhe Germany"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Geophysical Institute Karlsruhe Institute of Technology  Karlsruhe Germany",
           "institution_ids": [
             "https://openalex.org/I102335020"
           ]
         }
       ]
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5030094722",
         "display_name": "R. M. Harrington",
         "orcid": "https://orcid.org/0000-0002-3538-8020"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I5023651",
           "display_name": "McGill University",
           "ror": "https://ror.org/01pxwe438",
           "country_code": "CA",
           "type": "education",
           "lineage": [
             "https://openalex.org/I5023651"
           ]
         }
       ],
       "countries": [
         "CA"
       ],
       "is_corresponding": false,
       "raw_author_name": "R. M. Harrington",
       "raw_affiliation_strings": [
         "Earth and Planetary Sciences McGill University  Montreal Canada"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Earth and Planetary Sciences McGill University  Montreal Canada",
           "institution_ids": [
             "https://openalex.org/I5023651"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5089675533",
         "display_name": "E. S. Cochran",
         "orcid": "https://orcid.org/0000-0003-2485-4484"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "E. S. Cochran",
       "raw_affiliation_strings": [
         "U.S. Geological Survey  Pasadena California USA"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "U.S. Geological Survey  Pasadena California USA",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1002/jgrb.50345",
     "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrb.50345",
     "source": {
       "id": "https://openalex.org/S4210228715",
       "display_name": "Journal of Geophysical Research Solid Earth",
       "issn_l": "2169-9313",
       "issn": [
         "2169-9313",
         "2169-9356"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320595",
       "host_organization_name": "Wiley",
       "host_organization_lineage": [
         "https://openalex.org/P4310320595"
       ],
       "host_organization_lineage_names": [
         "Wiley"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "biblio": {
     "volume": "118",
     "issue": "9",
     "first_page": "4827",
     "last_page": "4846"
   },
   "citation_normalized_percentile": {
     "value": 0.838534,
     "is_in_top_1_percent": false,
     "is_in_top_10_percent": false
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1640721238",
   "cited_by_count": 6,
   "cited_by_percentile_year": {
     "min": 83,
     "max": 84
   },
   "concepts": [
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 0.674635
     },
     {
       "id": "https://openalex.org/C58489278",
       "wikidata": "https://www.wikidata.org/wiki/Q1172284",
       "display_name": "Data set",
       "level": 2,
       "score": 0.5267053
     },
     {
       "id": "https://openalex.org/C65155139",
       "wikidata": "https://www.wikidata.org/wiki/Q5380912",
       "display_name": "Envelope (radar)",
       "level": 3,
       "score": 0.50377196
     },
     {
       "id": "https://openalex.org/C153180895",
       "wikidata": "https://www.wikidata.org/wiki/Q7148389",
       "display_name": "Pattern recognition (psychology)",
       "level": 2,
       "score": 0.48369843
     },
     {
       "id": "https://openalex.org/C177264268",
       "wikidata": "https://www.wikidata.org/wiki/Q1514741",
       "display_name": "Set (abstract data type)",
       "level": 2,
       "score": 0.47911453
     },
     {
       "id": "https://openalex.org/C2779662365",
       "wikidata": "https://www.wikidata.org/wiki/Q5416694",
       "display_name": "Event (particle physics)",
       "level": 2,
       "score": 0.47115266
     },
     {
       "id": "https://openalex.org/C197424946",
       "wikidata": "https://www.wikidata.org/wiki/Q1165717",
       "display_name": "Waveform",
       "level": 3,
       "score": 0.43596625
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 0.43592638
     },
     {
       "id": "https://openalex.org/C99498987",
       "wikidata": "https://www.wikidata.org/wiki/Q2210247",
       "display_name": "Noise (video)",
       "level": 3,
       "score": 0.4315711
     },
     {
       "id": "https://openalex.org/C124101348",
       "wikidata": "https://www.wikidata.org/wiki/Q172491",
       "display_name": "Data mining",
       "level": 1,
       "score": 0.3812459
     },
     {
       "id": "https://openalex.org/C11413529",
       "wikidata": "https://www.wikidata.org/wiki/Q8366",
       "display_name": "Algorithm",
       "level": 1,
       "score": 0.36708462
     },
     {
       "id": "https://openalex.org/C115961682",
       "wikidata": "https://www.wikidata.org/wiki/Q860623",
       "display_name": "Image (mathematics)",
       "level": 2,
       "score": 0.13168207
     },
     {
       "id": "https://openalex.org/C76155785",
       "wikidata": "https://www.wikidata.org/wiki/Q418",
       "display_name": "Telecommunications",
       "level": 1,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C554190296",
       "wikidata": "https://www.wikidata.org/wiki/Q47528",
       "display_name": "Radar",
       "level": 2,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C62520636",
       "wikidata": "https://www.wikidata.org/wiki/Q944",
       "display_name": "Quantum mechanics",
       "level": 1,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C199360897",
       "wikidata": "https://www.wikidata.org/wiki/Q9143",
       "display_name": "Programming language",
       "level": 1,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [
     "https://openalex.org/A5078981722"
   ],
   "corresponding_institution_ids": [
     "https://openalex.org/I102335020"
   ],
   "countries_distinct_count": 3,
   "counts_by_year": [
     {
       "year": 2021,
       "cited_by_count": 1
     },
     {
       "year": 2019,
       "cited_by_count": 1
     },
     {
       "year": 2017,
       "cited_by_count": 1
     },
     {
       "year": 2016,
       "cited_by_count": 2
     },
     {
       "year": 2015,
       "cited_by_count": 1
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "Semiautomated tremor detection using a combined cross\u2010correlation and neural network approach",
   "doi": "https://doi.org/10.1002/jgrb.50345",
   "fulltext_origin": "pdf",
   "fwci": 1.263,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W1640721238",
   "ids": {
     "openalex": "https://openalex.org/W1640721238",
     "doi": "https://doi.org/10.1002/jgrb.50345",
     "mag": "1640721238"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 3,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/real-time-seismology",
       "display_name": "Real-Time Seismology",
       "score": 0.579656
     },
     {
       "id": "https://openalex.org/keywords/earthquake-detection",
       "display_name": "Earthquake Detection",
       "score": 0.551584
     },
     {
       "id": "https://openalex.org/keywords/seismic-phase-picking",
       "display_name": "Seismic Phase Picking",
       "score": 0.55005
     },
     {
       "id": "https://openalex.org/keywords/seismic-activity-monitoring",
       "display_name": "Seismic Activity Monitoring",
       "score": 0.546228
     },
     {
       "id": "https://openalex.org/keywords/seismic-event-classification",
       "display_name": "Seismic Event Classification",
       "score": 0.538433
     },
     {
       "id": "https://openalex.org/keywords/data-set",
       "display_name": "Data set",
       "score": 0.5267053
     },
     {
       "id": "https://openalex.org/keywords/envelope",
       "display_name": "Envelope (radar)",
       "score": 0.50377196
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": true,
       "landing_page_url": "https://doi.org/10.1002/jgrb.50345",
       "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrb.50345",
       "source": {
         "id": "https://openalex.org/S4210228715",
         "display_name": "Journal of Geophysical Research Solid Earth",
         "issn_l": "2169-9313",
         "issn": [
           "2169-9313",
           "2169-9356"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320595",
         "host_organization_name": "Wiley",
         "host_organization_lineage": [
           "https://openalex.org/P4310320595"
         ],
         "host_organization_lineage_names": [
           "Wiley"
         ],
         "type": "journal"
       },
       "license": null,
       "license_id": null,
       "version": "publishedVersion",
       "is_accepted": true,
       "is_published": true
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W1640721238/ngrams",
   "open_access": {
     "is_oa": true,
     "oa_status": "bronze",
     "oa_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrb.50345",
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1002/jgrb.50345",
     "pdf_url": "https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrb.50345",
     "source": {
       "id": "https://openalex.org/S4210228715",
       "display_name": "Journal of Geophysical Research Solid Earth",
       "issn_l": "2169-9313",
       "issn": [
         "2169-9313",
         "2169-9356"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320595",
       "host_organization_name": "Wiley",
       "host_organization_lineage": [
         "https://openalex.org/P4310320595"
       ],
       "host_organization_lineage_names": [
         "Wiley"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "primary_topic": {
     "id": "https://openalex.org/T13018",
     "display_name": "Machine Learning for Earthquake Early Warning Systems",
     "score": 0.9998,
     "subfield": {
       "id": "https://openalex.org/subfields/1702",
       "display_name": "Artificial Intelligence"
     },
     "field": {
       "id": "https://openalex.org/fields/17",
       "display_name": "Computer Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2013-09-01",
   "publication_year": 2013,
   "referenced_works": [
     "https://openalex.org/W1530010412",
     "https://openalex.org/W1603175557",
     "https://openalex.org/W1660371726",
     "https://openalex.org/W1722915369",
     "https://openalex.org/W1970831581",
     "https://openalex.org/W1976656597",
     "https://openalex.org/W1977966807",
     "https://openalex.org/W1978849688",
     "https://openalex.org/W1982183964",
     "https://openalex.org/W1985921328",
     "https://openalex.org/W1986754283",
     "https://openalex.org/W1987701823",
     "https://openalex.org/W2008841770",
     "https://openalex.org/W2009205932",
     "https://openalex.org/W2028584247",
     "https://openalex.org/W2038412275",
     "https://openalex.org/W2044123278",
     "https://openalex.org/W2047765465",
     "https://openalex.org/W2051224630",
     "https://openalex.org/W2054747879",
     "https://openalex.org/W2061855670",
     "https://openalex.org/W2066073101",
     "https://openalex.org/W2080447864",
     "https://openalex.org/W2089308771",
     "https://openalex.org/W2099760261",
     "https://openalex.org/W2110802877",
     "https://openalex.org/W2136418253",
     "https://openalex.org/W2136668526",
     "https://openalex.org/W2137181995",
     "https://openalex.org/W2140287156",
     "https://openalex.org/W2151492534",
     "https://openalex.org/W2158336491",
     "https://openalex.org/W2166653786",
     "https://openalex.org/W2170559182",
     "https://openalex.org/W2398851514",
     "https://openalex.org/W2483137123",
     "https://openalex.org/W2578026778",
     "https://openalex.org/W4245176872",
     "https://openalex.org/W79317937"
   ],
   "referenced_works_count": 39,
   "related_works": [
     "https://openalex.org/W4367555392",
     "https://openalex.org/W3040712279",
     "https://openalex.org/W2538520412",
     "https://openalex.org/W2424423710",
     "https://openalex.org/W2374664672",
     "https://openalex.org/W2364769705",
     "https://openalex.org/W2176409448",
     "https://openalex.org/W2129841057",
     "https://openalex.org/W2056136368",
     "https://openalex.org/W1974895211"
   ],
   "sustainable_development_goals": [
     {
       "score": 0.42,
       "id": "https://metadata.un.org/sdg/14",
       "display_name": "Life below water"
     }
   ],
   "title": "Semiautomated tremor detection using a combined cross\u2010correlation and neural network approach",
   "topics": [
     {
       "id": "https://openalex.org/T13018",
       "display_name": "Machine Learning for Earthquake Early Warning Systems",
       "score": 0.9998,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12424",
       "display_name": "Study of Earthquake Precursor Phenomena",
       "score": 0.9997,
       "subfield": {
         "id": "https://openalex.org/subfields/1908",
         "display_name": "Geophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10110",
       "display_name": "Seismicity and Tectonic Plate Interactions",
       "score": 0.9991,
       "subfield": {
         "id": "https://openalex.org/subfields/1908",
         "display_name": "Geophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-12T20:56:39.808545",
   "versions": []
 }

}