Item talk:Q242559
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70048826", "url": "https://pubs.usgs.gov/publication/70048826" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70048826 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.rse.2013.08.002", "url": "https://doi.org/10.1016/j.rse.2013.08.002" } ], "journal": { "@type": "Periodical", "name": "Remote Sensing of Environment", "volumeNumber": "139", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Remote Sensing of Environment" } ], "datePublished": "2013", "dateModified": "2021-04-22", "abstract": "Precise monitoring of agricultural crop biomass and yield quantities is critical for crop production management and prediction. The goal of this study was to compare hyperspectral narrowband (HNB)\u00a0versus\u00a0multispectral broadband (MBB) reflectance data in studying irrigated cropland characteristics of five leading world crops (cotton, wheat, maize, rice, and alfalfa) with the objectives of: 1. Modeling crop productivity, and 2. Discriminating crop types. HNB data were obtained from Hyperion hyperspectral imager and field ASD spectroradiometer, and MBB data were obtained from five broadband sensors: Landsat-7 Enhanced Thematic Mapper Plus (ETM\u00a0+), Advanced Land Imager (ALI), Indian Remote Sensing (IRS), IKONOS, and QuickBird. A large collection of field spectral and biophysical variables were gathered for the 5 crops in Central Asia throughout the growing seasons of 2006 and 2007. Overall, the HNB and hyperspectral vegetation index (HVI) crop biophysical models explained about 25% greater variability when compared with corresponding MBB models. Typically, 3 to 7 HNBs, in multiple linear regression models of a given crop variable, explained more than 93% of variability in crop models. The evaluation of \u03bb1\u00a0(400\u20132500\u00a0nm)\u00a0versus\u00a0\u03bb2\u00a0(400\u20132500\u00a0nm) plots of various crop biophysical variables showed that the best two-band normalized difference HVIs involved HNBs centered at: (i) 742\u00a0nm and 1175\u00a0nm (HVI742-1175), (ii) 1296\u00a0nm and 1054\u00a0nm (HVI1296-1054), (iii) 1225\u00a0nm and 697\u00a0nm (HVI1225-697), and (iv) 702\u00a0nm and 1104\u00a0nm (HVI702-1104). Among the most frequently occurring HNBs in various crop biophysical models, 74% were located in the 1051\u20132331\u00a0nm spectral range, followed by 10% in the moisture sensitive 970\u00a0nm, 6% in the red and red-edge (630\u2013752\u00a0nm), and the remaining 10% distributed between blue (400\u2013500\u00a0nm), green (501\u2013600\u00a0nm), and NIR (760\u2013900\u00a0nm).Discriminant models, used for discriminating 3 or 4 or 5 crop types, showed significantly higher accuracies when using HNBs (>\u00a090%) over MBBs data (varied between 45 and 84%).Finally, the study highlighted 29 HNBs of Hyperion that are optimal in the study of agricultural crops and potentially significant to the upcoming NASA HyspIRI mission. Determining optimal and redundant bands for a given application will help overcoming the Hughes' phenomenon (or curse of high dimensionality of data).", "description": "15 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Thenkabail, Prasad S. pthenkabail@usgs.gov", "givenName": "Prasad S.", "familyName": "Thenkabail", "email": "pthenkabail@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2182-8822", "url": "https://orcid.org/0000-0002-2182-8822" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Mariotto, Isabella", "givenName": "Isabella", "familyName": "Mariotto" }, { "@type": "Person", "name": "Huete, Alfredo", "givenName": "Alfredo", "familyName": "Huete" }, { "@type": "Person", "name": "Slonecker, E. Terrence", "givenName": "E. Terrence", "familyName": "Slonecker", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5793-0503", "url": "https://orcid.org/0000-0002-5793-0503" }, "affiliation": [ { "@type": "Organization", "name": "National Civil Applications Center", "url": "https://www.usgs.gov/programs/national-geological-and-geophysical-data-preservation-program" } ] }, { "@type": "Person", "name": "Platonov, Alexander", "givenName": "Alexander", "familyName": "Platonov" } ], "funder": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" }, { "@type": "Organization", "name": "National Civil Applications Center", "url": "https://www.usgs.gov/programs/national-geological-and-geophysical-data-preservation-program" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "Uzbekistan" }, { "@type": "Place", "additionalType": "unknown", "name": "Syr Darya River Basin" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ 68.704655, 40.8555 ], [ 68.704655, 40.885405 ], [ 68.719804, 40.885405 ], [ 68.719804, 40.8555 ], [ 68.704655, 40.8555 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 40.8704525, "longitude": 68.7122295 } ] } ] }, "OpenAlex": { "abstract_inverted_index": { "Precise": [ 0 ], "monitoring": [ 1 ], "of": [ 2, 19, 39, 105, 124, 160, 169, 176, 185, 319, 327, 356, 359 ], "agricultural": [ 3, 328 ], "crop": [ 4, 12, 56, 61, 136, 163, 172, 187, 239, 294 ], "biomass": [ 5 ], "and": [ 6, 15, 48, 58, 71, 75, 100, 108, 126, 131, 205, 212, 219, 223, 227, 264, 268, 280, 311, 330, 341 ], "yield": [ 7 ], "quantities": [ 8 ], "is": [ 9 ], "critical": [ 10 ], "for": [ 11, 113, 287, 344 ], "production": [ 13 ], "management": [ 14 ], "prediction.": [ 16 ], "The": [ 17, 174 ], "goal": [ 18 ], "this": [ 20 ], "study": [ 21, 315, 326 ], "was": [ 22 ], "to": [ 23, 152, 333 ], "compare": [ 24 ], "hyperspectral": [ 25, 69, 132 ], "narrowband": [ 26 ], "(HNB)": [ 27 ], "versus": [ 28, 180 ], "multispectral": [ 29 ], "broadband": [ 30, 82 ], "(MBB)": [ 31 ], "reflectance": [ 32 ], "data": [ 33, 64, 77, 307 ], "in": [ 34, 117, 155, 171, 237, 245, 254, 261, 324 ], "studying": [ 35 ], "irrigated": [ 36 ], "cropland": [ 37 ], "characteristics": [ 38 ], "five": [ 40, 81 ], "leading": [ 41 ], "world": [ 42 ], "crops": [ 43, 116, 329 ], "(cotton,": [ 44 ], "wheat,": [ 45 ], "maize,": [ 46 ], "rice,": [ 47 ], "alfalfa)": [ 49 ], "with": [ 50, 146 ], "the": [ 51, 114, 121, 129, 192, 232, 246, 255, 262, 269, 314, 325, 334, 351 ], "objectives": [ 52 ], "of:": [ 53 ], "1.": [ 54 ], "Modeling": [ 55 ], "productivity,": [ 57 ], "2.": [ 59 ], "Discriminating": [ 60 ], "types.": [ 62 ], "HNB": [ 63, 130 ], "were": [ 65, 78, 111, 243 ], "obtained": [ 66, 79 ], "from": [ 67, 80 ], "Hyperion": [ 68, 320 ], "imager": [ 70 ], "field": [ 72, 106 ], "ASD": [ 73 ], "spectroradiometer,": [ 74 ], "MBB": [ 76, 148 ], "sensors:": [ 83 ], "Landsat-7": [ 84 ], "Enhanced": [ 85 ], "Thematic": [ 86 ], "Mapper": [ 87 ], "Plus": [ 88 ], "(ETM": [ 89 ], "+),": [ 90 ], "Advanced": [ 91 ], "Land": [ 92 ], "Imager": [ 93 ], "(ALI),": [ 94 ], "Indian": [ 95 ], "Remote": [ 96 ], "Sensing": [ 97 ], "(IRS),": [ 98 ], "IKONOS,": [ 99 ], "QuickBird.": [ 101 ], "A": [ 102 ], "large": [ 103 ], "collection": [ 104 ], "spectral": [ 107, 249 ], "biophysical": [ 109, 137, 188, 240 ], "variables": [ 110, 189 ], "gathered": [ 112 ], "5": [ 115, 293 ], "Central": [ 118 ], "Asia": [ 119 ], "throughout": [ 120 ], "growing": [ 122 ], "seasons": [ 123 ], "2006": [ 125 ], "2007.": [ 127 ], "Overall,": [ 128 ], "vegetation": [ 133 ], "index": [ 134 ], "(HVI)": [ 135 ], "models": [ 138, 159 ], "explained": [ 139, 165 ], "about": [ 140 ], "25%": [ 141 ], "greater": [ 142 ], "variability": [ 143, 170 ], "when": [ 144, 300 ], "compared": [ 145 ], "corresponding": [ 147 ], "models.": [ 149, 173 ], "Typically,": [ 150 ], "3": [ 151, 289 ], "7": [ 153 ], "HNBs,": [ 154 ], "multiple": [ 156 ], "linear": [ 157 ], "regression": [ 158 ], "a": [ 161, 345 ], "given": [ 162, 346 ], "variable,": [ 164 ], "more": [ 166 ], "than": [ 167 ], "93%": [ 168 ], "evaluation": [ 175 ], "\u03bb1": [ 177 ], "(400\u20132500": [ 178, 182 ], "nm)": [ 179, 183 ], "\u03bb2": [ 181 ], "plots": [ 184 ], "various": [ 186, 238 ], "showed": [ 190, 296 ], "that": [ 191, 321 ], "best": [ 193 ], "two-band": [ 194 ], "normalized": [ 195 ], "difference": [ 196 ], "HVIs": [ 197 ], "involved": [ 198 ], "HNBs": [ 199, 236, 302, 318 ], "centered": [ 200 ], "at:": [ 201 ], "(i)": [ 202 ], "742": [ 203 ], "nm": [ 204, 207, 211, 214, 218, 221, 226, 229, 248 ], "1175": [ 206 ], "(HVI742-1175),": [ 208 ], "(ii)": [ 209 ], "1296": [ 210 ], "1054": [ 213 ], "(HVI1296-1054),": [ 215 ], "(iii)": [ 216 ], "1225": [ 217 ], "697": [ 220 ], "(HVI1225-697),": [ 222 ], "(iv)": [ 224 ], "702": [ 225 ], "1104": [ 228 ], "(HVI702-1104).": [ 230 ], "Among": [ 231 ], "most": [ 233 ], "frequently": [ 234 ], "occurring": [ 235 ], "models,": [ 241, 285 ], "74%": [ 242 ], "located": [ 244 ], "1051\u20132331": [ 247 ], "range,": [ 250 ], "followed": [ 251 ], "by": [ 252 ], "10%": [ 253, 271 ], "moisture": [ 256 ], "sensitive": [ 257 ], "970": [ 258 ], "nm,": [ 259 ], "6%": [ 260 ], "red": [ 263 ], "red-edge": [ 265 ], "(630\u2013752": [ 266 ], "nm),": [ 267, 276, 279 ], "remaining": [ 270 ], "distributed": [ 272 ], "between": [ 273, 309 ], "blue": [ 274 ], "(400\u2013500": [ 275 ], "green": [ 277 ], "(501\u2013600": [ 278 ], "NIR": [ 281 ], "(760\u2013900": [ 282 ], "nm).": [ 283 ], "Discriminant": [ 284 ], "used": [ 286 ], "discriminating": [ 288 ], "or": [ 290, 292 ], "4": [ 291 ], "types,": [ 295 ], "significantly": [ 297 ], "higher": [ 298 ], "accuracies": [ 299 ], "using": [ 301 ], "(>": [ 303 ], "90%)": [ 304 ], "over": [ 305 ], "MBBs": [ 306 ], "(varied": [ 308 ], "45": [ 310 ], "84%).": [ 312 ], "Finally,": [ 313 ], "highlighted": [ 316 ], "29": [ 317 ], "are": [ 322 ], "optimal": [ 323, 340 ], "potentially": [ 331 ], "significant": [ 332 ], "upcoming": [ 335 ], "NASA": [ 336 ], "HyspIRI": [ 337 ], "mission.": [ 338 ], "Determining": [ 339 ], "redundant": [ 342 ], "bands": [ 343 ], "application": [ 347 ], "will": [ 348 ], "help": [ 349 ], "overcoming": [ 350 ], "Hughes'": [ 352 ], "phenomenon": [ 353 ], "(or": [ 354 ], "curse": [ 355 ], "high": [ 357 ], "dimensionality": [ 358 ], "data).": [ 360 ] }, "apc_list": { "value": 4070, "currency": "USD", "value_usd": 4070, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5074729812", "display_name": "Isabella Mariotto", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I138006243", "display_name": "University of Arizona", "ror": "https://ror.org/03m2x1q45", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I138006243" ] }, { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Isabella Mariotto", "raw_affiliation_strings": [ "Soil, Water & Environmental Science Department, The University of Arizona, USA", "U.S. Geological Survey, Flagstaff Science Center, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "Soil, Water & Environmental Science Department, The University of Arizona, USA", "institution_ids": [ "https://openalex.org/I138006243" ] }, { "raw_affiliation_string": "U.S. Geological Survey, Flagstaff Science Center, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5039070473", "display_name": "Prasad S. Thenkabail", "orcid": "https://orcid.org/0000-0002-2182-8822" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Prasad S. Thenkabail", "raw_affiliation_strings": [ "U.S. Geological Survey, Flagstaff Science Center, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Flagstaff Science Center, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5046277669", "display_name": "Alfredo Huete", "orcid": "https://orcid.org/0000-0003-2809-2376" }, "institutions": [ { "id": "https://openalex.org/I114017466", "display_name": "University of Technology Sydney", "ror": "https://ror.org/03f0f6041", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I114017466" ] } ], "countries": [ "AU" ], "is_corresponding": false, "raw_author_name": "Alfredo Huete", "raw_affiliation_strings": [ "Plant Functional Biology and Climate Change, University of Technology Sydney, Australia" ], "affiliations": [ { "raw_affiliation_string": "Plant Functional Biology and Climate Change, University of Technology Sydney, Australia", "institution_ids": [ "https://openalex.org/I114017466" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5072483859", "display_name": "E. Terrence Slonecker", "orcid": "https://orcid.org/0000-0002-5793-0503" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "E. Terrence Slonecker", "raw_affiliation_strings": [ "U.S. Geological Survey, Eastern Geographic Science Center, Reston, VA, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Eastern Geographic Science Center, Reston, VA, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5061844192", "display_name": "Alexander E. Platonov", "orcid": "https://orcid.org/0000-0001-7450-0081" }, "institutions": [], "countries": [ "UZ" ], "is_corresponding": false, "raw_author_name": "Alexander Platonov", "raw_affiliation_strings": [ "International Water Management Institute (IWMI), Tashkent Office, Uzbekistan" ], "affiliations": [ { "raw_affiliation_string": "International Water Management Institute (IWMI), Tashkent Office, Uzbekistan", "institution_ids": [] } ] } ], "best_oa_location": null, "biblio": { "volume": "139", "issue": null, "first_page": "291", "last_page": "305" }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2037798659", "cited_by_count": 155, "cited_by_percentile_year": { "min": 98, "max": 99 }, "concepts": [ { "id": "https://openalex.org/c159078339", "wikidata": "https://www.wikidata.org/wiki/Q959005", "display_name": "Hyperspectral imaging", "level": 2, "score": 0.86409557, "qid": "Q158833" }, { "id": "https://openalex.org/c130066347", "wikidata": "https://www.wikidata.org/wiki/Q680509", "display_name": "Spectroradiometer", "level": 3, "score": 0.76048374, "qid": null }, { "id": "https://openalex.org/c173163844", "wikidata": "https://www.wikidata.org/wiki/Q1761440", "display_name": "Multispectral image", "level": 2, "score": 0.74194837, "qid": null }, { "id": "https://openalex.org/c62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.7288727, "qid": "Q158877" }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.6938995, "qid": "Q166085" }, { "id": "https://openalex.org/c137580998", "wikidata": "https://www.wikidata.org/wiki/Q235352", "display_name": "Crop", "level": 2, "score": 0.6821928, "qid": null }, { "id": "https://openalex.org/c2775938548", "wikidata": "https://www.wikidata.org/wiki/Q1565182", "display_name": "Thematic Mapper", "level": 3, "score": 0.4773826, "qid": null }, { "id": "https://openalex.org/c120217122", "wikidata": "https://www.wikidata.org/wiki/Q740083", "display_name": "Precision agriculture", "level": 3, "score": 0.41392568, "qid": null }, { "id": "https://openalex.org/c126343540", "wikidata": "https://www.wikidata.org/wiki/Q889514", "display_name": "Crop yield", "level": 2, "score": 0.41293144, "qid": null }, { "id": "https://openalex.org/c6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 0.2783271, "qid": "Q166146" }, { "id": "https://openalex.org/c2778102629", "wikidata": "https://www.wikidata.org/wiki/Q725252", "display_name": "Satellite imagery", "level": 2, "score": 0.19857317, "qid": null }, { "id": "https://openalex.org/c108597893", "wikidata": "https://www.wikidata.org/wiki/Q663650", "display_name": "Reflectivity", "level": 2, "score": 0.18528393, "qid": null }, { "id": "https://openalex.org/c118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 0.1697818, "qid": "Q166198" }, { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.11580145, "qid": "Q158983" }, { "id": "https://openalex.org/c86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.08155018, "qid": "Q158998" }, { "id": "https://openalex.org/c121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 0.06405249, "qid": "Q166093" }, { "id": "https://openalex.org/c18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 0.063836396, "qid": "Q158972" }, { "id": "https://openalex.org/c120665830", "wikidata": "https://www.wikidata.org/wiki/Q14620", "display_name": "Optics", "level": 1, "score": 0.0, "qid": "Q226288" } ], "corresponding_author_ids": [ "https://openalex.org/A5074729812" ], "corresponding_institution_ids": [ "https://openalex.org/I138006243", "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ], "countries_distinct_count": 3, "counts_by_year": [ { "year": 2024, "cited_by_count": 10 }, { "year": 2023, "cited_by_count": 21 }, { "year": 2022, "cited_by_count": 16 }, { "year": 2021, "cited_by_count": 20 }, { "year": 2020, "cited_by_count": 14 }, { "year": 2019, "cited_by_count": 14 }, { "year": 2018, "cited_by_count": 16 }, { "year": 2017, "cited_by_count": 13 }, { "year": 2016, "cited_by_count": 6 }, { "year": 2015, "cited_by_count": 13 }, { "year": 2014, "cited_by_count": 9 }, { "year": 2013, "cited_by_count": 2 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission", "doi": "https://doi.org/10.1016/j.rse.2013.08.002", "fulltext_origin": "ngrams", "fwci": 7.589, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2037798659", "ids": { "openalex": "https://openalex.org/W2037798659", "doi": "https://doi.org/10.1016/j.rse.2013.08.002", "mag": "2037798659" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 4, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/hyperspectral", "display_name": "Hyperspectral", "score": 0.540223 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.513113 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.rse.2013.08.002", "pdf_url": null, "source": { "id": "https://openalex.org/S141808269", "display_name": "Remote Sensing of Environment", "issn_l": "0034-4257", "issn": [ "0034-4257", "1879-0704" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2037798659/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.rse.2013.08.002", "pdf_url": null, "source": { "id": "https://openalex.org/S141808269", "display_name": "Remote Sensing of Environment", "issn_l": "0034-4257", "issn": [ "0034-4257", "1879-0704" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2013-12-01", "publication_year": 2013, "referenced_works": [ "https://openalex.org/W120340242", "https://openalex.org/W1240553673", "https://openalex.org/W1494131642", "https://openalex.org/W1501367650", "https://openalex.org/W1600877088", "https://openalex.org/W1966035399", "https://openalex.org/W2009201504", "https://openalex.org/W2009409575", "https://openalex.org/W2014955600", "https://openalex.org/W2016092758", "https://openalex.org/W2018027183", "https://openalex.org/W2022224654", "https://openalex.org/W2028462059", "https://openalex.org/W2071190035", "https://openalex.org/W2096599785", "https://openalex.org/W2097192876", "https://openalex.org/W2098108008", "https://openalex.org/W2100530679", "https://openalex.org/W2108544744", "https://openalex.org/W2117613972", "https://openalex.org/W2124121789", "https://openalex.org/W2139584183", "https://openalex.org/W2139925058", "https://openalex.org/W2145862305", "https://openalex.org/W2150853404", "https://openalex.org/W2154326988", "https://openalex.org/W2157372111", "https://openalex.org/W2159961845", "https://openalex.org/W2174400750", "https://openalex.org/W2261167432", "https://openalex.org/W2294798173", "https://openalex.org/W2314024971", "https://openalex.org/W2317866228", "https://openalex.org/W2481105521", "https://openalex.org/W2989983865" ], "referenced_works_count": 35, "related_works": [ "https://openalex.org/W4318664220", "https://openalex.org/W2771047279", "https://openalex.org/W2767054107", "https://openalex.org/W2478500201", "https://openalex.org/W2406890003", "https://openalex.org/W2342509369", "https://openalex.org/W2072620969", "https://openalex.org/W2061775097", "https://openalex.org/W1989739405", "https://openalex.org/W1001804318" ], "sustainable_development_goals": [ { "id": "https://metadata.un.org/sdg/16", "score": 0.47, "display_name": "Peace, justice, and strong institutions" } ], "title": "Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "score": 0.9847, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "score": 0.9839, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-07T08:57:15.421526", "versions": [], "qid": null }
}