Item talk:Q239564
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70192160", "url": "https://pubs.usgs.gov/publication/70192160" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70192160 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.isprsjprs.2017.01.019", "url": "https://doi.org/10.1016/j.isprsjprs.2017.01.019" } ], "journal": { "@type": "Periodical", "name": "ISPRS Journal of Photogrammetry and Remote Sensing", "volumeNumber": "126", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "ISPRS Journal of Photogrammetry and Remote Sensing" } ], "datePublished": "2017", "dateModified": "2017-10-23", "abstract": "The automation of agricultural mapping using satellite-derived remotely sensed data remains a challenge in Africa because of the heterogeneous and fragmental landscape, complex crop cycles, and limited access to local knowledge. Currently, consistent, continent-wide routine cropland mapping of Africa does not exist, with most studies focused either on certain portions of the continent or at most a one-time effort at mapping the continent at coarse resolution remote sensing. In this research, we addressed these limitations by applying an automated cropland mapping algorithm (ACMA) that captures extensive knowledge on the croplands of Africa available through: (a) ground-based training samples, (b) very high (sub-meter to five-meter) resolution imagery (VHRI), and (c) local knowledge captured during field visits and/or sourced from country reports and literature. The study used 16-day time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) composited data at 250-m resolution for the entire African continent. Based on these data, the study first produced accurate reference cropland layers or RCLs (cropland extent/areas, irrigation\u00a0versus\u00a0rainfed, cropping intensities, crop dominance, and croplands\u00a0versus\u00a0cropland fallows) for the year 2014 that provided an overall accuracy of around 90% for crop extent in different agro-ecological zones (AEZs). The RCLs for the year 2014 (RCL2014) were then used in the development of the ACMA algorithm to create ACMA-derived cropland layers for 2014 (ACL2014). ACL2014 when compared pixel-by-pixel with the RCL2014 had an overall similarity greater than 95%. Based on the ACL2014, the African continent had 296\u00a0Mha of net cropland areas (260\u00a0Mha cultivated plus 36\u00a0Mha fallows) and 330\u00a0Mha of gross cropland areas. Of the 260\u00a0Mha of net cropland areas cultivated during 2014, 90.6% (236\u00a0Mha) was rainfed and just 9.4% (24\u00a0Mha) was irrigated. Africa has about 15% of the world\u2019s population, but only about 6% of world\u2019s irrigation. Net cropland area distribution was 95\u00a0Mha during season 1, 117\u00a0Mha during season 2, and 84\u00a0Mha continuous. About 58% of the rainfed and 39% of the irrigated were single crops (net cropland area without cropland fallows) cropped during either season 1 (January-May) or season 2 (June-September). The ACMA algorithm was deployed on Google Earth Engine (GEE) cloud computing platform and applied on MODIS time-series data from 2003 through 2014 to obtain ACMA-derived cropland layers for these years (ACL2003 to ACL2014). The results indicated that over these twelve years, on average: (a) croplands increased by 1\u00a0Mha/yr, and (b) cropland fallows decreased by 1\u00a0Mha/year. Cropland areas computed from ACL2014 for the 55 African countries were largely underestimated when compared with an independent source of census-based cropland data, with a root-mean-square error (RMSE) of 3.5\u00a0Mha. ACMA demonstrated the ability to hind-cast (past years), now-cast (present year), and forecast (future years) cropland products using MODIS 250-m time-series data rapidly, but currently, insufficient reference data exist to rigorously report trends from these results.", "description": "20 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Xiong, Jun jxiong@usgs.gov", "givenName": "Jun", "familyName": "Xiong", "email": "jxiong@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2320-0780", "url": "https://orcid.org/0000-0002-2320-0780" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Thenkabail, Prasad S. pthenkabail@usgs.gov", "givenName": "Prasad S.", "familyName": "Thenkabail", "email": "pthenkabail@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2182-8822", "url": "https://orcid.org/0000-0002-2182-8822" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Gumma, Murali Krishna", "givenName": "Murali Krishna", "familyName": "Gumma" }, { "@type": "Person", "name": "Teluguntla, Pardhasaradhi G. pteluguntla@usgs.gov", "givenName": "Pardhasaradhi G.", "familyName": "Teluguntla", "email": "pteluguntla@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8060-9841", "url": "https://orcid.org/0000-0001-8060-9841" }, "affiliation": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ] }, { "@type": "Person", "name": "Poehnelt, Justin", "givenName": "Justin", "familyName": "Poehnelt", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-5914-4269", "url": "https://orcid.org/0000-0001-5914-4269" } }, { "@type": "Person", "name": "Congalton, Russell G.", "givenName": "Russell G.", "familyName": "Congalton", "affiliation": [ { "@type": "Organization", "name": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" } ] }, { "@type": "Person", "name": "Yadav, Kamini", "givenName": "Kamini", "familyName": "Yadav", "affiliation": [ { "@type": "Organization", "name": "Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA" } ] }, { "@type": "Person", "name": "Thau, David", "givenName": "David", "familyName": "Thau" } ], "funder": [ { "@type": "Organization", "name": "Western Geographic Science Center", "url": "https://www.usgs.gov/centers/western-geographic-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "unknown", "name": "Africa", "url": "https://geonames.org/4253757" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -18.80859375, -36.03133177633187 ], [ 52.03125, -36.03133177633187 ], [ 52.03125, 37.579412513438385 ], [ -18.80859375, 37.579412513438385 ], [ -18.80859375, -36.03133177633187 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 0.7740403685532584, "longitude": 16.611328125 } ] } ] }, "OpenAlex": { "abstract_inverted_index": { "The": [ 0, 122, 196, 349, 383 ], "automation": [ 1 ], "of": [ 2, 16, 37, 50, 90, 127, 185, 209, 245, 259, 267, 290, 298, 322, 327, 426, 435 ], "agricultural": [ 3 ], "mapping": [ 4, 36, 60, 80 ], "using": [ 5, 455 ], "satellite-derived": [ 6 ], "remotely": [ 7 ], "sensed": [ 8 ], "data": [ 9, 139, 367, 459, 465 ], "remains": [ 10 ], "a": [ 11, 56, 431 ], "challenge": [ 12 ], "in": [ 13, 191, 206 ], "Africa": [ 14, 38, 91, 286 ], "because": [ 15 ], "the": [ 17, 51, 61, 88, 144, 152, 177, 199, 207, 210, 226, 237, 239, 264, 291, 323, 328, 413, 440 ], "heterogeneous": [ 18 ], "and": [ 19, 25, 107, 120, 171, 256, 279, 316, 325, 362, 399, 449 ], "fragmental": [ 20 ], "landscape,": [ 21 ], "complex": [ 22 ], "crop": [ 23, 169, 189 ], "cycles,": [ 24 ], "limited": [ 26 ], "access": [ 27 ], "to": [ 28, 102, 213, 372, 381, 442, 467 ], "local": [ 29, 109 ], "knowledge.": [ 30 ], "Currently,": [ 31 ], "consistent,": [ 32 ], "continent-wide": [ 33 ], "routine": [ 34 ], "cropland": [ 35, 79, 158, 174, 216, 247, 261, 269, 302, 334, 337, 375, 401, 428, 453 ], "does": [ 39 ], "not": [ 40 ], "exist,": [ 41 ], "with": [ 42, 225, 422, 430 ], "most": [ 43, 55 ], "studies": [ 44 ], "focused": [ 45 ], "either": [ 46, 341 ], "on": [ 47, 87, 149, 236, 354, 364, 391 ], "certain": [ 48 ], "portions": [ 49 ], "continent": [ 52, 62, 241 ], "or": [ 53, 160, 345 ], "at": [ 54, 59, 63, 140 ], "one-time": [ 57 ], "effort": [ 58 ], "coarse": [ 64 ], "resolution": [ 65, 104, 142 ], "remote": [ 66 ], "sensing.": [ 67 ], "In": [ 68 ], "this": [ 69 ], "research,": [ 70 ], "we": [ 71 ], "addressed": [ 72 ], "these": [ 73, 150, 378, 388, 472 ], "limitations": [ 74 ], "by": [ 75, 396, 404 ], "applying": [ 76 ], "an": [ 77, 182, 229, 423 ], "automated": [ 78 ], "algorithm": [ 81, 212, 351 ], "(ACMA)": [ 82 ], "that": [ 83, 180, 386 ], "captures": [ 84 ], "extensive": [ 85 ], "knowledge": [ 86, 110 ], "croplands": [ 89, 172, 394 ], "available": [ 92 ], "through:": [ 93 ], "(a)": [ 94, 393 ], "ground-based": [ 95 ], "training": [ 96 ], "samples,": [ 97 ], "(b)": [ 98, 400 ], "very": [ 99 ], "high": [ 100 ], "(sub-meter": [ 101 ], "five-meter)": [ 103 ], "imagery": [ 105 ], "(VHRI),": [ 106 ], "(c)": [ 108 ], "captured": [ 111 ], "during": [ 112, 272, 308, 313, 340 ], "field": [ 113 ], "visits": [ 114 ], "and/or": [ 115 ], "sourced": [ 116 ], "from": [ 117, 368, 410, 471 ], "country": [ 118 ], "reports": [ 119 ], "literature.": [ 121 ], "study": [ 123, 153 ], "used": [ 124, 205 ], "16-day": [ 125 ], "time-series": [ 126, 366, 458 ], "Moderate": [ 128 ], "Resolution": [ 129 ], "Imaging": [ 130 ], "Spectroradiometer": [ 131 ], "(MODIS)": [ 132 ], "normalized": [ 133 ], "difference": [ 134 ], "vegetation": [ 135 ], "index": [ 136 ], "(NDVI)": [ 137 ], "composited": [ 138 ], "250-m": [ 141, 457 ], "for": [ 143, 176, 188, 198, 218, 377, 412 ], "entire": [ 145 ], "African": [ 146, 240, 415 ], "continent.": [ 147 ], "Based": [ 148, 235 ], "data,": [ 151, 429 ], "first": [ 154 ], "produced": [ 155 ], "accurate": [ 156 ], "reference": [ 157, 464 ], "layers": [ 159, 217, 376 ], "RCLs": [ 161, 197 ], "(cropland": [ 162 ], "extent/areas,": [ 163 ], "irrigation": [ 164 ], "versus": [ 165, 173 ], "rainfed,": [ 166 ], "cropping": [ 167 ], "intensities,": [ 168 ], "dominance,": [ 170 ], "fallows)": [ 175, 255, 338 ], "year": [ 178, 200 ], "2014": [ 179, 201, 219, 371 ], "provided": [ 181 ], "overall": [ 183, 230 ], "accuracy": [ 184 ], "around": [ 186 ], "90%": [ 187 ], "extent": [ 190 ], "different": [ 192 ], "agro-ecological": [ 193 ], "zones": [ 194 ], "(AEZs).": [ 195 ], "(RCL2014)": [ 202 ], "were": [ 203, 330, 417 ], "then": [ 204 ], "development": [ 208 ], "ACMA": [ 211, 350, 438 ], "create": [ 214 ], "ACMA-derived": [ 215, 374 ], "(ACL2014).": [ 220 ], "ACL2014": [ 221, 411 ], "when": [ 222, 420 ], "compared": [ 223, 421 ], "pixel-by-pixel": [ 224 ], "RCL2014": [ 227 ], "had": [ 228, 242 ], "similarity": [ 231 ], "greater": [ 232 ], "than": [ 233 ], "95%.": [ 234 ], "ACL2014,": [ 238 ], "296": [ 243 ], "Mha": [ 244, 250, 254, 258, 266, 307, 312, 318 ], "net": [ 246, 268 ], "areas": [ 248, 270, 408 ], "(260": [ 249 ], "cultivated": [ 251, 271 ], "plus": [ 252 ], "36": [ 253 ], "330": [ 257 ], "gross": [ 260 ], "areas.": [ 262 ], "Of": [ 263 ], "260": [ 265 ], "2014,": [ 273 ], "90.6%": [ 274 ], "(236": [ 275 ], "Mha)": [ 276, 283 ], "was": [ 277, 284, 305, 352 ], "rainfed": [ 278, 324 ], "just": [ 280 ], "9.4%": [ 281 ], "(24": [ 282 ], "irrigated.": [ 285 ], "has": [ 287 ], "about": [ 288, 296 ], "15%": [ 289 ], "world\u2019s": [ 292, 299 ], "population,": [ 293 ], "but": [ 294, 461 ], "only": [ 295 ], "6%": [ 297 ], "irrigation.": [ 300 ], "Net": [ 301 ], "area": [ 303, 335 ], "distribution": [ 304 ], "95": [ 306 ], "season": [ 309, 314, 342, 346 ], "1,": [ 310 ], "117": [ 311 ], "2,": [ 315 ], "84": [ 317 ], "continuous.": [ 319 ], "About": [ 320 ], "58%": [ 321 ], "39%": [ 326 ], "irrigated": [ 329 ], "single": [ 331 ], "crops": [ 332 ], "(net": [ 333 ], "without": [ 336 ], "cropped": [ 339 ], "1": [ 343, 397, 405 ], "(January-May)": [ 344 ], "2": [ 347 ], "(June-September).": [ 348 ], "deployed": [ 353 ], "Google": [ 355 ], "Earth": [ 356 ], "Engine": [ 357 ], "(GEE)": [ 358 ], "cloud": [ 359 ], "computing": [ 360 ], "platform": [ 361 ], "applied": [ 363 ], "MODIS": [ 365, 456 ], "2003": [ 369 ], "through": [ 370 ], "obtain": [ 373 ], "years": [ 379 ], "(ACL2003": [ 380 ], "ACL2014).": [ 382 ], "results": [ 384 ], "indicated": [ 385 ], "over": [ 387 ], "twelve": [ 389 ], "years,": [ 390 ], "average:": [ 392 ], "increased": [ 395 ], "Mha/yr,": [ 398 ], "fallows": [ 402 ], "decreased": [ 403 ], "Mha/year.": [ 406 ], "Cropland": [ 407 ], "computed": [ 409 ], "55": [ 414 ], "countries": [ 416 ], "largely": [ 418 ], "underestimated": [ 419 ], "independent": [ 424 ], "source": [ 425 ], "census-based": [ 427 ], "root-mean-square": [ 432 ], "error": [ 433 ], "(RMSE)": [ 434 ], "3.5": [ 436 ], "Mha.": [ 437 ], "demonstrated": [ 439 ], "ability": [ 441 ], "hind-cast": [ 443 ], "(past": [ 444 ], "years),": [ 445 ], "now-cast": [ 446 ], "(present": [ 447 ], "year),": [ 448 ], "forecast": [ 450 ], "(future": [ 451 ], "years)": [ 452 ], "products": [ 454 ], "rapidly,": [ 460 ], "currently,": [ 462 ], "insufficient": [ 463 ], "exist": [ 466 ], "rigorously": [ 468 ], "report": [ 469 ], "trends": [ 470 ], "results.": [ 473 ] }, "apc_list": { "value": 3310, "currency": "USD", "value_usd": 3310, "provenance": "doaj" }, "apc_paid": { "value": 3310, "currency": "USD", "value_usd": 3310, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5002534050", "display_name": "Jun Xiong", "orcid": "https://orcid.org/0000-0002-2320-0780" }, "institutions": [ { "id": "https://openalex.org/I4210109616", "display_name": "Bay Area Environmental Research Institute", "ror": "https://ror.org/024tt5x58", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] }, { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Jun Xiong", "raw_affiliation_strings": [ "Bay Area Environmental Research Institute (BAERI), 596 1st St West Sonoma, CA 95476, USA", "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "Bay Area Environmental Research Institute (BAERI), 596 1st St West Sonoma, CA 95476, USA", "institution_ids": [ "https://openalex.org/I4210109616" ] }, { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5039070473", "display_name": "Prasad S. Thenkabail", "orcid": "https://orcid.org/0000-0002-2182-8822" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Prasad S. Thenkabail", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5084676540", "display_name": "Murali Krishna Gumma", "orcid": "https://orcid.org/0000-0002-3760-3935" }, "institutions": [ { "id": "https://openalex.org/I4210163774", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "ror": "https://ror.org/0541a3n79", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] } ], "countries": [ "IN" ], "is_corresponding": false, "raw_author_name": "Murali K. Gumma", "raw_affiliation_strings": [ "International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India" ], "affiliations": [ { "raw_affiliation_string": "International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India", "institution_ids": [ "https://openalex.org/I4210163774" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5014096050", "display_name": "Pardhasaradhi Teluguntla", "orcid": "https://orcid.org/0000-0001-8060-9841" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, { "id": "https://openalex.org/I4210109616", "display_name": "Bay Area Environmental Research Institute", "ror": "https://ror.org/024tt5x58", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Pardhasaradhi Teluguntla", "raw_affiliation_strings": [ "Bay Area Environmental Research Institute (BAERI), 596 1st St West Sonoma, CA 95476, USA", "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] }, { "raw_affiliation_string": "Bay Area Environmental Research Institute (BAERI), 596 1st St West Sonoma, CA 95476, USA", "institution_ids": [ "https://openalex.org/I4210109616" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5020085315", "display_name": "Justin Poehnelt", "orcid": "https://orcid.org/0000-0001-5914-4269" }, "institutions": [ { "id": "https://openalex.org/I4210111045", "display_name": "Astrogeology Science Center", "ror": "https://ror.org/02623eb90", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Justin Poehnelt", "raw_affiliation_strings": [ "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey (USGS), 2255, N. Gemini Drive, Flagstaff, AZ 86001, USA", "institution_ids": [ "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5022247838", "display_name": "Russell G. Congalton", "orcid": "https://orcid.org/0000-0003-3891-2163" }, "institutions": [ { "id": "https://openalex.org/I161057412", "display_name": "University of New Hampshire", "ror": "https://ror.org/01rmh9n78", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I161057412" ] }, { "id": "https://openalex.org/I179093154", "display_name": "University of New Hampshire at Manchester", "ror": "https://ror.org/04pvpk743", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I179093154" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Russell G. Congalton", "raw_affiliation_strings": [ "University of New Hampshire, NH, USA" ], "affiliations": [ { "raw_affiliation_string": "University of New Hampshire, NH, USA", "institution_ids": [ "https://openalex.org/I161057412", "https://openalex.org/I179093154" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5032266925", "display_name": "Kamini Yadav", "orcid": "https://orcid.org/0000-0002-7560-8884" }, "institutions": [ { "id": "https://openalex.org/I179093154", "display_name": "University of New Hampshire at Manchester", "ror": "https://ror.org/04pvpk743", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I179093154" ] }, { "id": "https://openalex.org/I161057412", "display_name": "University of New Hampshire", "ror": "https://ror.org/01rmh9n78", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I161057412" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Kamini Yadav", "raw_affiliation_strings": [ "University of New Hampshire, NH, USA" ], "affiliations": [ { "raw_affiliation_string": "University of New Hampshire, NH, USA", "institution_ids": [ "https://openalex.org/I179093154", "https://openalex.org/I161057412" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5010727961", "display_name": "David Thau", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1291425158", "display_name": "Google (United States)", "ror": "https://ror.org/00njsd438", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I1291425158", "https://openalex.org/I4210128969" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "David Thau", "raw_affiliation_strings": [ "Google, MountainView, CA, USA" ], "affiliations": [ { "raw_affiliation_string": "Google, MountainView, CA, USA", "institution_ids": [ "https://openalex.org/I1291425158" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "126", "issue": null, "first_page": "225", "last_page": "244" }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2592712793", "cited_by_count": 404, "cited_by_percentile_year": { "min": 99, "max": 100 }, "concepts": [ { "id": "https://openalex.org/c62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.7193626, "qid": "Q158877" }, { "id": "https://openalex.org/c2777007095", "wikidata": "https://www.wikidata.org/wiki/Q676840", "display_name": "Moderate-resolution imaging spectroradiometer", "level": 3, "score": 0.5912891, "qid": null }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.5078507, "qid": "Q166085" }, { "id": "https://openalex.org/c1549246", "wikidata": "https://www.wikidata.org/wiki/Q718775", "display_name": "Normalized Difference Vegetation Index", "level": 3, "score": 0.5068105, "qid": null }, { "id": "https://openalex.org/c160633673", "wikidata": "https://www.wikidata.org/wiki/Q355198", "display_name": "Pixel", "level": 2, "score": 0.47849125, "qid": null }, { "id": "https://openalex.org/c19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 0.44593692, "qid": null }, { "id": "https://openalex.org/c13558536", "wikidata": "https://www.wikidata.org/wiki/Q785116", "display_name": "Cropping", "level": 3, "score": 0.43879294, "qid": null }, { "id": "https://openalex.org/c118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 0.42054778, "qid": "Q166198" }, { "id": "https://openalex.org/c39399123", "wikidata": "https://www.wikidata.org/wiki/Q1348989", "display_name": "Earth observation", "level": 3, "score": 0.42022943, "qid": null }, { "id": "https://openalex.org/c88862950", "wikidata": "https://www.wikidata.org/wiki/Q11453", "display_name": "Irrigation", "level": 2, "score": 0.41350955, "qid": "Q159192" }, { "id": "https://openalex.org/c2776133958", "wikidata": "https://www.wikidata.org/wiki/Q7918366", "display_name": "Vegetation (pathology)", "level": 2, "score": 0.41061434, "qid": null }, { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.2861755, "qid": "Q158983" }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.23324451, "qid": "Q158969" }, { "id": "https://openalex.org/c132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 0.20537916, "qid": "Q169118" }, { "id": "https://openalex.org/c127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.15038759, "qid": "Q158984" }, { "id": "https://openalex.org/c6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 0.10226399, "qid": "Q166146" }, { "id": "https://openalex.org/c71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 0.0, "qid": "Q166104" }, { "id": "https://openalex.org/c111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 0.0, "qid": "Q166123" }, { "id": "https://openalex.org/c166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 0.0, "qid": "Q226195" }, { "id": "https://openalex.org/c142724271", "wikidata": "https://www.wikidata.org/wiki/Q7208", "display_name": "Pathology", "level": 1, "score": 0.0, "qid": "Q166260" }, { "id": "https://openalex.org/c127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.0, "qid": "Q158977" }, { "id": "https://openalex.org/c31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 0.0, "qid": "Q166180" }, { "id": "https://openalex.org/c86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0, "qid": "Q158998" }, { "id": "https://openalex.org/c146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 0.0, "qid": "Q166129" } ], "corresponding_author_ids": [ "https://openalex.org/A5002534050" ], "corresponding_institution_ids": [ "https://openalex.org/I4210109616", "https://openalex.org/I4210111045", "https://openalex.org/I1286329397" ], "countries_distinct_count": 2, "counts_by_year": [ { "year": 2024, "cited_by_count": 25 }, { "year": 2023, "cited_by_count": 67 }, { "year": 2022, "cited_by_count": 68 }, { "year": 2021, "cited_by_count": 81 }, { "year": 2020, "cited_by_count": 77 }, { "year": 2019, "cited_by_count": 52 }, { "year": 2018, "cited_by_count": 28 }, { "year": 2017, "cited_by_count": 6 } ], "created_date": "2017-03-16", "datasets": [], "display_name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", "doi": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "fulltext_origin": "pdf", "fwci": 28.479, "grants": [ { "funder": "https://openalex.org/F4320306101", "funder_display_name": "National Aeronautics and Space Administration", "award_id": "NNH13AV82I" }, { "funder": "https://openalex.org/F4320332183", "funder_display_name": "U.S. Geological Survey", "award_id": null } ], "has_fulltext": true, "id": "https://openalex.org/W2592712793", "ids": { "openalex": "https://openalex.org/W2592712793", "doi": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "mag": "2592712793" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 7, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/moderate-resolution-imaging-spectroradiometer", "display_name": "Moderate-resolution imaging spectroradiometer", "score": 0.5912891 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.50064 }, { "id": "https://openalex.org/keywords/earth-observation", "display_name": "Earth observation", "score": 0.42022943 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": true, "landing_page_url": "http://oar.icrisat.org/9915/1/03_PHOTO_2017_April_Africa%20Croplands.pdf", "pdf_url": "http://oar.icrisat.org/9915/1/03_PHOTO_2017_April_Africa%20Croplands.pdf", "source": { "id": "https://openalex.org/S4306401867", "display_name": "Open Access Repository of ICRISAT (International Crops Research Institute for the Semi-Arid Tropics)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I4210163774", "host_organization_name": "International Crops Research Institute for the Semi-Arid Tropics", "host_organization_lineage": [ "https://openalex.org/I4210163774" ], "host_organization_lineage_names": [ "International Crops Research Institute for the Semi-Arid Tropics" ], "type": "repository" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "acceptedVersion", "is_accepted": true, "is_published": false } ], "locations_count": 2, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2592712793/ngrams", "open_access": { "is_oa": true, "oa_status": "hybrid", "oa_url": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "pdf_url": null, "source": { "id": "https://openalex.org/S173339282", "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing", "issn_l": "0924-2716", "issn": [ "0924-2716", "1872-8235" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": "cc-by-nc-nd", "license_id": "https://openalex.org/licenses/cc-by-nc-nd", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.997, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2017-04-01", "publication_year": 2017, "referenced_works": [ "https://openalex.org/W1479862749", "https://openalex.org/W1482289351", "https://openalex.org/W1494131642", "https://openalex.org/W1501116310", "https://openalex.org/W1590169263", "https://openalex.org/W1598804140", "https://openalex.org/W1610505722", "https://openalex.org/W1676329549", "https://openalex.org/W1744340417", "https://openalex.org/W1913521411", "https://openalex.org/W1963854524", "https://openalex.org/W1970687962", "https://openalex.org/W1976129996", "https://openalex.org/W1980385468", "https://openalex.org/W1981213426", "https://openalex.org/W1987161776", "https://openalex.org/W1990269578", "https://openalex.org/W1994050572", "https://openalex.org/W1998281138", "https://openalex.org/W2000047929", "https://openalex.org/W2000318706", "https://openalex.org/W2001510610", "https://openalex.org/W2002317332", "https://openalex.org/W2006288015", "https://openalex.org/W2006870841", "https://openalex.org/W2006929658", "https://openalex.org/W2007482623", "https://openalex.org/W2012950829", "https://openalex.org/W2013360540", "https://openalex.org/W2017107861", "https://openalex.org/W2018310662", "https://openalex.org/W2018736216", "https://openalex.org/W2019452249", "https://openalex.org/W2019508170", "https://openalex.org/W2023865077", "https://openalex.org/W2024352505", "https://openalex.org/W2027475314", "https://openalex.org/W2031841848", "https://openalex.org/W2033848829", "https://openalex.org/W2035222601", "https://openalex.org/W2035549557", "https://openalex.org/W2037455286", "https://openalex.org/W2042386716", "https://openalex.org/W2050494310", "https://openalex.org/W2055248879", "https://openalex.org/W2055687255", "https://openalex.org/W2057424318", "https://openalex.org/W2058208710", "https://openalex.org/W2063907334", "https://openalex.org/W2066122301", "https://openalex.org/W2067474817", "https://openalex.org/W2069094527", "https://openalex.org/W2072377819", "https://openalex.org/W2074095067", "https://openalex.org/W2074539518", "https://openalex.org/W2075368648", "https://openalex.org/W2076186394", "https://openalex.org/W2076214659", "https://openalex.org/W2076347632", "https://openalex.org/W2078252173", "https://openalex.org/W2081562328", "https://openalex.org/W2081829028", "https://openalex.org/W2082081125", "https://openalex.org/W2085333643", "https://openalex.org/W2086054835", "https://openalex.org/W209068112", "https://openalex.org/W2094708176", "https://openalex.org/W2100469123", "https://openalex.org/W2108493207", "https://openalex.org/W2111743232", "https://openalex.org/W2114385036", "https://openalex.org/W2118096631", "https://openalex.org/W2121025662", "https://openalex.org/W2129305329", "https://openalex.org/W2134845742", "https://openalex.org/W2140181255", "https://openalex.org/W2142231247", "https://openalex.org/W2146150336", "https://openalex.org/W2147462896", "https://openalex.org/W2155289042", "https://openalex.org/W2156077349", "https://openalex.org/W2166736950", "https://openalex.org/W2169955806", "https://openalex.org/W2170804038", "https://openalex.org/W2176432844", "https://openalex.org/W2178470810", "https://openalex.org/W2200121095", "https://openalex.org/W2218047931", "https://openalex.org/W2219736093", "https://openalex.org/W2232938311", "https://openalex.org/W2293457033", "https://openalex.org/W2326330146", "https://openalex.org/W2420298574", "https://openalex.org/W2460459846", "https://openalex.org/W2463336507", "https://openalex.org/W2568420287", "https://openalex.org/W2955497201", "https://openalex.org/W4240616305", "https://openalex.org/W4285719527", "https://openalex.org/W4301661978", "https://openalex.org/W45732310", "https://openalex.org/W561088580", "https://openalex.org/W600580655" ], "referenced_works_count": 103, "related_works": [ "https://openalex.org/W4385533602", "https://openalex.org/W4382519838", "https://openalex.org/W4382239404", "https://openalex.org/W4324030030", "https://openalex.org/W3207046288", "https://openalex.org/W3189212133", "https://openalex.org/W3183766399", "https://openalex.org/W3023446922", "https://openalex.org/W2736619525", "https://openalex.org/W2526455285" ], "sustainable_development_goals": [ { "score": 0.49, "display_name": "Zero hunger", "id": "https://metadata.un.org/sdg/2" } ], "title": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.997, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "score": 0.992, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "score": 0.9635, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-09T20:34:43.112439", "versions": [], "qid": null }
}