Item talk:Q238911
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Estimating linear temporal trends from aggregated environmental monitoring data", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70178569", "url": "https://pubs.usgs.gov/publication/70178569" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70178569 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.ecolind.2016.10.036", "url": "https://doi.org/10.1016/j.ecolind.2016.10.036" } ], "journal": { "@type": "Periodical", "name": "Ecological Indicators", "volumeNumber": "74", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Ecological Indicators" } ], "datePublished": "2017", "dateModified": "2016-12-01", "abstract": "Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.", "description": "11 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Erickson, Richard A. rerickson@usgs.gov", "givenName": "Richard A.", "familyName": "Erickson", "email": "rerickson@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-4649-482X", "url": "https://orcid.org/0000-0003-4649-482X" }, "affiliation": [ { "@type": "Organization", "name": "Upper Midwest Environmental Sciences Center", "url": "https://www.usgs.gov/centers/upper-midwest-environmental-sciences-center" } ] }, { "@type": "Person", "name": "Gray, Brian R. brgray@usgs.gov", "givenName": "Brian R.", "familyName": "Gray", "email": "brgray@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-7682-9550", "url": "https://orcid.org/0000-0001-7682-9550" }, "affiliation": [ { "@type": "Organization", "name": "Upper Midwest Environmental Sciences Center", "url": "https://www.usgs.gov/centers/upper-midwest-environmental-sciences-center" } ] }, { "@type": "Person", "name": "Eager, Eric A.", "givenName": "Eric A.", "familyName": "Eager", "affiliation": [ { "@type": "Organization", "name": "Department of Mathematics, University of Wisconsin-La Crosse" } ] } ], "funder": [ { "@type": "Organization", "name": "Upper Midwest Environmental Sciences Center", "url": "https://www.usgs.gov/centers/upper-midwest-environmental-sciences-center" } ] }, "OpenAlex": { "abstract_inverted_index": { "Trend": [ 0 ], "estimates": [ 1 ], "are": [ 2, 16 ], "often": [ 3, 31 ], "used": [ 4, 53, 191 ], "as": [ 5 ], "part": [ 6 ], "of": [ 7, 79, 99, 104, 124 ], "environmental": [ 8, 27, 195 ], "monitoring": [ 9, 28, 90, 196 ], "programs.": [ 10 ], "These": [ 11 ], "trends": [ 12, 85, 95, 163 ], "inform": [ 13 ], "managers": [ 14 ], "(e.g.,": [ 15 ], "desired": [ 17 ], "species": [ 18, 22, 98, 103 ], "increasing": [ 19 ], "or": [ 20 ], "undesired": [ 21 ], "decreasing?).": [ 23 ], "Data": [ 24 ], "collected": [ 25 ], "from": [ 26, 61, 86, 107 ], "programs": [ 29 ], "is": [ 30 ], "aggregated": [ 32, 194 ], "(i.e.,": [ 33 ], "averaged),": [ 34 ], "which": [ 35 ], "confounds": [ 36 ], "sampling": [ 37, 44 ], "and": [ 38, 46, 70, 101, 137, 187 ], "process": [ 39, 47 ], "variation.": [ 40 ], "State-space": [ 41 ], "models": [ 42, 82, 128, 159, 172, 189 ], "allow": [ 43 ], "variation": [ 45 ], "variations": [ 48 ], "to": [ 49, 56, 83, 134, 192 ], "be": [ 50 ], "separated.": [ 51 ], "We": [ 52, 74, 92, 113, 174 ], "simulated": [ 54 ], "time-series": [ 55 ], "compare": [ 57 ], "linear": [ 58, 67, 118, 145, 179 ], "trend": [ 59 ], "estimations": [ 60 ], "three": [ 62 ], "state-space": [ 63, 158, 188 ], "models,": [ 64 ], "a": [ 65, 87, 154, 177 ], "simple": [ 66, 117, 144, 178 ], "regression": [ 68, 119, 146, 180 ], "model,": [ 69 ], "an": [ 71 ], "auto-regressive": [ 72 ], "model.": [ 73 ], "also": [ 75 ], "compared": [ 76 ], "the": [ 77, 108, 116, 121, 126, 143, 148, 171 ], "performance": [ 78, 123 ], "these": [ 80 ], "five": [ 81 ], "estimate": [ 84, 162 ], "long": [ 88 ], "term": [ 89 ], "program.": [ 91 ], "specifically": [ 93 ], "estimated": [ 94, 166 ], "for": [ 96 ], "two": [ 97 ], "fish": [ 100 ], "four": [ 102 ], "aquatic": [ 105 ], "vegetation": [ 106 ], "Upper": [ 109 ], "Mississippi": [ 110 ], "River": [ 111 ], "system.": [ 112 ], "found": [ 114, 175 ], "that": [ 115, 176 ], "had": [ 120, 138 ], "best": [ 122, 132, 169 ], "all": [ 125 ], "given": [ 127, 155 ], "because": [ 129 ], "it": [ 130 ], "was": [ 131 ], "able": [ 133 ], "recover": [ 135 ], "parameters": [ 136 ], "consistent": [ 139 ], "numerical": [ 140 ], "convergence.": [ 141 ], "Conversely,": [ 142 ], "did": [ 147, 160 ], "worst": [ 149 ], "job": [ 150 ], "estimating": [ 151 ], "populations": [ 152 ], "in": [ 153 ], "year.": [ 156 ], "The": [ 157 ], "not": [ 161 ], "well,": [ 164 ], "but": [ 165 ], "population": [ 167 ], "sizes": [ 168 ], "when": [ 170, 190 ], "converged.": [ 173 ], "performed": [ 181 ], "better": [ 182 ], "than": [ 183 ], "more": [ 184 ], "complex": [ 185 ], "autoregression": [ 186 ], "analyze": [ 193 ], "data.": [ 197 ] }, "apc_list": { "value": 2500, "currency": "USD", "value_usd": 2500, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5015009630", "display_name": "Richard A. Erickson", "orcid": "https://orcid.org/0000-0003-4649-482X" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Richard A. Erickson", "raw_affiliation_strings": [ "Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, WI, United States" ], "affiliations": [ { "raw_affiliation_string": "Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, WI, United States", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5009306415", "display_name": "Brian R. Gray", "orcid": "https://orcid.org/0000-0001-7682-9550" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Brian R. Gray", "raw_affiliation_strings": [ "Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, WI, United States" ], "affiliations": [ { "raw_affiliation_string": "Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, WI, United States", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5071388669", "display_name": "Eric Alan Eager", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I4657992", "display_name": "University of Wisconsin\u2013La Crosse", "ror": "https://ror.org/00x8ccz20", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I4657992" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Eric A. Eager", "raw_affiliation_strings": [ "Department of Mathematics and Statistics, University of Wisconsin \u2013 La Crosse, La Crosse, WI, United States" ], "affiliations": [ { "raw_affiliation_string": "Department of Mathematics and Statistics, University of Wisconsin \u2013 La Crosse, La Crosse, WI, United States", "institution_ids": [ "https://openalex.org/I4657992" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "74", "issue": null, "first_page": "62", "last_page": "72" }, "citation_normalized_percentile": { "value": 0.794575, "is_in_top_1_percent": false, "is_in_top_10_percent": false }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2550582318", "cited_by_count": 5, "cited_by_percentile_year": { "min": 80, "max": 82 }, "concepts": [ { "id": "https://openalex.org/C48921125", "wikidata": "https://www.wikidata.org/wiki/Q10861030", "display_name": "Linear regression", "level": 2, "score": 0.59722894 }, { "id": "https://openalex.org/C140779682", "wikidata": "https://www.wikidata.org/wiki/Q210868", "display_name": "Sampling (signal processing)", "level": 3, "score": 0.5753408 }, { "id": "https://openalex.org/C163175372", "wikidata": "https://www.wikidata.org/wiki/Q3339222", "display_name": "Linear model", "level": 2, "score": 0.5395265 }, { "id": "https://openalex.org/C159877910", "wikidata": "https://www.wikidata.org/wiki/Q2202883", "display_name": "Autoregressive model", "level": 2, "score": 0.5307785 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 0.49931526 }, { "id": "https://openalex.org/C83546350", "wikidata": "https://www.wikidata.org/wiki/Q1139051", "display_name": "Regression", "level": 2, "score": 0.49855733 }, { "id": "https://openalex.org/C2908647359", "wikidata": "https://www.wikidata.org/wiki/Q2625603", "display_name": "Population", "level": 2, "score": 0.49796057 }, { "id": "https://openalex.org/C149769383", "wikidata": "https://www.wikidata.org/wiki/Q7520804", "display_name": "Simple linear regression", "level": 3, "score": 0.4965654 }, { "id": "https://openalex.org/C152877465", "wikidata": "https://www.wikidata.org/wiki/Q208042", "display_name": "Regression analysis", "level": 2, "score": 0.46680975 }, { "id": "https://openalex.org/C52918065", "wikidata": "https://www.wikidata.org/wiki/Q230945", "display_name": "State-space representation", "level": 2, "score": 0.44738343 }, { "id": "https://openalex.org/C149782125", "wikidata": "https://www.wikidata.org/wiki/Q160039", "display_name": "Econometrics", "level": 1, "score": 0.3964919 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.38864815 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.298629 }, { "id": "https://openalex.org/C149923435", "wikidata": "https://www.wikidata.org/wiki/Q37732", "display_name": "Demography", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C106131492", "wikidata": "https://www.wikidata.org/wiki/Q3072260", "display_name": "Filter (signal processing)", "level": 2, "score": 0.0 }, { "id": "https://openalex.org/C11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C144024400", "wikidata": "https://www.wikidata.org/wiki/Q21201", "display_name": "Sociology", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5015009630" ], "corresponding_institution_ids": [ "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2023, "cited_by_count": 1 }, { "year": 2022, "cited_by_count": 1 }, { "year": 2019, "cited_by_count": 1 }, { "year": 2018, "cited_by_count": 2 } ], "created_date": "2016-11-30", "datasets": [], "display_name": "Estimating linear temporal trends from aggregated environmental monitoring data", "doi": "https://doi.org/10.1016/j.ecolind.2016.10.036", "fulltext_origin": "ngrams", "fwci": 0.663, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2550582318", "ids": { "openalex": "https://openalex.org/W2550582318", "doi": "https://doi.org/10.1016/j.ecolind.2016.10.036", "mag": "2550582318" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/ensemble-learning", "display_name": "Ensemble Learning", "score": 0.536762 }, { "id": "https://openalex.org/keywords/change-detection", "display_name": "Change Detection", "score": 0.531302 }, { "id": "https://openalex.org/keywords/structure-learning", "display_name": "Structure Learning", "score": 0.522508 }, { "id": "https://openalex.org/keywords/production-forecasting", "display_name": "Production Forecasting", "score": 0.52035 }, { "id": "https://openalex.org/keywords/data-streams", "display_name": "Data Streams", "score": 0.51692 }, { "id": "https://openalex.org/keywords/state-space-representation", "display_name": "State-space representation", "score": 0.44738343 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.ecolind.2016.10.036", "pdf_url": null, "source": { "id": "https://openalex.org/S194154261", "display_name": "Ecological Indicators", "issn_l": "1470-160X", "issn": [ "1470-160X", "1872-7034" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2550582318/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.ecolind.2016.10.036", "pdf_url": null, "source": { "id": "https://openalex.org/S194154261", "display_name": "Ecological Indicators", "issn_l": "1470-160X", "issn": [ "1470-160X", "1872-7034" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12761", "display_name": "Adaptation to Concept Drift in Data Streams", "score": 0.9612, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2017-03-01", "publication_year": 2017, "referenced_works": [ "https://openalex.org/W1544274373", "https://openalex.org/W1889193170", "https://openalex.org/W1963754130", "https://openalex.org/W1966476722", "https://openalex.org/W1972677429", "https://openalex.org/W1977258390", "https://openalex.org/W1981028777", "https://openalex.org/W1981457167", "https://openalex.org/W1985025719", "https://openalex.org/W1986621942", "https://openalex.org/W2025173747", "https://openalex.org/W2036682095", "https://openalex.org/W2045002121", "https://openalex.org/W2045656233", "https://openalex.org/W2047102900", "https://openalex.org/W2052763544", "https://openalex.org/W2062248865", "https://openalex.org/W2068780485", "https://openalex.org/W2079851821", "https://openalex.org/W2083680853", "https://openalex.org/W2090768022", "https://openalex.org/W2102360969", "https://openalex.org/W2102843713", "https://openalex.org/W2107870117", "https://openalex.org/W2116394790", "https://openalex.org/W2119204307", "https://openalex.org/W2137595065", "https://openalex.org/W2148317584", "https://openalex.org/W2155988679", "https://openalex.org/W2166632814", "https://openalex.org/W2167715268", "https://openalex.org/W2194085058", "https://openalex.org/W2262133047", "https://openalex.org/W2319291298", "https://openalex.org/W2582743722", "https://openalex.org/W4229668875" ], "referenced_works_count": 36, "related_works": [ "https://openalex.org/W4249094282", "https://openalex.org/W3042029886", "https://openalex.org/W2992298911", "https://openalex.org/W2624501724", "https://openalex.org/W2393341384", "https://openalex.org/W2343747089", "https://openalex.org/W2184922845", "https://openalex.org/W2106328306", "https://openalex.org/W2018697919", "https://openalex.org/W1858292687" ], "sustainable_development_goals": [ { "id": "https://metadata.un.org/sdg/15", "display_name": "Life on land", "score": 0.69 } ], "title": "Estimating linear temporal trends from aggregated environmental monitoring data", "topics": [ { "id": "https://openalex.org/T12761", "display_name": "Adaptation to Concept Drift in Data Streams", "score": 0.9612, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "score": 0.9527, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9505, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T14:06:08.951928", "versions": [] }
}