Item talk:Q236547
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "A cross-validation package driving Netica with python", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70128127", "url": "https://pubs.usgs.gov/publication/70128127" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70128127 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.envsoft.2014.09.007", "url": "https://doi.org/10.1016/j.envsoft.2014.09.007" } ], "journal": { "@type": "Periodical", "name": "Environmental Modelling and Software", "volumeNumber": "63", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Environmental Modelling and Software" } ], "datePublished": "2014", "dateModified": "2014-10-03", "abstract": "Bayesian networks (BNs) are powerful tools for probabilistically simulating natural systems and emulating process models. Cross validation is a technique to avoid overfitting resulting from overly complex BNs. Overfitting reduces predictive skill. Cross-validation for BNs is known but rarely implemented due partly to a lack of software tools designed to work with available BN packages. CVNetica is open-source, written in Python, and extends the Netica software package to perform cross-validation and read, rebuild, and learn BNs from data. Insights gained from cross-validation and implications on prediction versus description are illustrated with: a data-driven oceanographic application; and a model-emulation application. These examples show that overfitting occurs when BNs become more complex than allowed by supporting data and overfitting incurs computational costs as well as causing a reduction in prediction skill. CVNetica evaluates overfitting using several complexity metrics (we used level of discretization) and its impact on performance metrics (we used skill).", "description": "10 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Fienen, Michael N. mnfienen@usgs.gov", "givenName": "Michael N.", "familyName": "Fienen", "email": "mnfienen@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-7756-4651", "url": "https://orcid.org/0000-0002-7756-4651" }, "affiliation": [ { "@type": "Organization", "name": "Wisconsin Water Science Center", "url": "https://www.usgs.gov/centers/upper-midwest-water-science-center" } ] }, { "@type": "Person", "name": "Plant, Nathaniel G. nplant@usgs.gov", "givenName": "Nathaniel G.", "familyName": "Plant", "email": "nplant@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5703-5672", "url": "https://orcid.org/0000-0002-5703-5672" }, "affiliation": [ { "@type": "Organization", "name": "St. Petersburg Coastal and Marine Science Center", "url": "https://www.usgs.gov/centers/spcmsc" }, { "@type": "Organization", "name": "Office of the AD Hazards", "url": "https://www.usgs.gov/mission-areas/natural-hazards" } ] } ], "funder": [ { "@type": "Organization", "name": "Wisconsin Water Science Center", "url": "https://www.usgs.gov/centers/upper-midwest-water-science-center" } ] }, "OpenAlex": { "abstract_inverted_index": { "Bayesian": [ 0 ], "networks": [ 1 ], "(BNs)": [ 2 ], "are": [ 3, 88 ], "powerful": [ 4 ], "tools": [ 5, 47 ], "for": [ 6, 33 ], "probabilistically": [ 7 ], "simulating": [ 8 ], "natural": [ 9 ], "systems": [ 10 ], "and": [ 11, 61, 70, 73, 82, 95, 115, 141 ], "emulating": [ 12 ], "process": [ 13 ], "models.": [ 14 ], "Cross": [ 15 ], "validation": [ 16 ], "is": [ 17, 35, 56 ], "a": [ 18, 43, 91, 96, 124 ], "technique": [ 19 ], "to": [ 20, 42, 49, 67 ], "avoid": [ 21 ], "overfitting": [ 22, 103, 116, 131 ], "resulting": [ 23 ], "from": [ 24, 76, 80 ], "overly": [ 25 ], "complex": [ 26, 109 ], "BNs.": [ 27 ], "Overfitting": [ 28 ], "reduces": [ 29 ], "predictive": [ 30 ], "skill.": [ 31, 128 ], "Cross-validation": [ 32 ], "BNs": [ 34, 75, 106 ], "known": [ 36 ], "but": [ 37 ], "rarely": [ 38 ], "implemented": [ 39 ], "due": [ 40 ], "partly": [ 41 ], "lack": [ 44 ], "of": [ 45, 139 ], "software": [ 46, 65 ], "designed": [ 48 ], "work": [ 50 ], "with": [ 51 ], "available": [ 52 ], "BN": [ 53 ], "packages.": [ 54 ], "CVNetica": [ 55, 129 ], "open-source,": [ 57 ], "written": [ 58 ], "in": [ 59, 126 ], "Python,": [ 60 ], "extends": [ 62 ], "the": [ 63 ], "Netica": [ 64 ], "package": [ 66 ], "perform": [ 68 ], "cross-validation": [ 69, 81 ], "read,": [ 71 ], "rebuild,": [ 72 ], "learn": [ 74 ], "data.": [ 77 ], "Insights": [ 78 ], "gained": [ 79 ], "implications": [ 83 ], "on": [ 84, 144 ], "prediction": [ 85, 127 ], "versus": [ 86 ], "description": [ 87 ], "illustrated": [ 89 ], "with:": [ 90 ], "data-driven": [ 92 ], "oceanographic": [ 93 ], "application;": [ 94 ], "model-emulation": [ 97 ], "application.": [ 98 ], "These": [ 99 ], "examples": [ 100 ], "show": [ 101 ], "that": [ 102 ], "occurs": [ 104 ], "when": [ 105 ], "become": [ 107 ], "more": [ 108 ], "than": [ 110 ], "allowed": [ 111 ], "by": [ 112 ], "supporting": [ 113 ], "data": [ 114 ], "incurs": [ 117 ], "computational": [ 118 ], "costs": [ 119 ], "as": [ 120, 122 ], "well": [ 121 ], "causing": [ 123 ], "reduction": [ 125 ], "evaluates": [ 130 ], "using": [ 132 ], "several": [ 133 ], "complexity": [ 134 ], "metrics": [ 135, 146 ], "(we": [ 136, 147 ], "used": [ 137, 148 ], "level": [ 138 ], "discretization)": [ 140 ], "its": [ 142 ], "impact": [ 143 ], "performance": [ 145 ], "skill).": [ 149 ] }, "apc_list": { "value": 3400, "currency": "USD", "value_usd": 3400, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5081887696", "display_name": "Michael N. Fienen", "orcid": "https://orcid.org/0000-0002-7756-4651" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Michael N. Fienen", "raw_affiliation_strings": [ "US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA." ], "affiliations": [ { "raw_affiliation_string": "US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5065618772", "display_name": "Nathaniel G. Plant", "orcid": "https://orcid.org/0000-0002-5703-5672" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Nathaniel G. Plant", "raw_affiliation_strings": [ "US Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 Fourth Street South, St. Petersburg, FL 33701, USA#TAB#" ], "affiliations": [ { "raw_affiliation_string": "US Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 Fourth Street South, St. Petersburg, FL 33701, USA#TAB#", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "63", "issue": null, "first_page": "14", "last_page": "23" }, "citation_normalized_percentile": { "value": 0.999968, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1983416467", "cited_by_count": 47, "cited_by_percentile_year": { "min": 96, "max": 97 }, "concepts": [ { "id": "https://openalex.org/C22019652", "wikidata": "https://www.wikidata.org/wiki/Q331309", "display_name": "Overfitting", "level": 3, "score": 0.9711819 }, { "id": "https://openalex.org/C519991488", "wikidata": "https://www.wikidata.org/wiki/Q28865", "display_name": "Python (programming language)", "level": 2, "score": 0.73592293 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.7342191 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.6903952 }, { "id": "https://openalex.org/C27181475", "wikidata": "https://www.wikidata.org/wiki/Q541014", "display_name": "Cross-validation", "level": 2, "score": 0.6095968 }, { "id": "https://openalex.org/C149810388", "wikidata": "https://www.wikidata.org/wiki/Q5374873", "display_name": "Emulation", "level": 2, "score": 0.6009559 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.5956933 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.49534097 }, { "id": "https://openalex.org/C2777904410", "wikidata": "https://www.wikidata.org/wiki/Q7397", "display_name": "Software", "level": 2, "score": 0.45933902 }, { "id": "https://openalex.org/C107673813", "wikidata": "https://www.wikidata.org/wiki/Q812534", "display_name": "Bayesian probability", "level": 2, "score": 0.42313325 }, { "id": "https://openalex.org/C98045186", "wikidata": "https://www.wikidata.org/wiki/Q205663", "display_name": "Process (computing)", "level": 2, "score": 0.4208276 }, { "id": "https://openalex.org/C50644808", "wikidata": "https://www.wikidata.org/wiki/Q192776", "display_name": "Artificial neural network", "level": 2, "score": 0.12101033 }, { "id": "https://openalex.org/C199360897", "wikidata": "https://www.wikidata.org/wiki/Q9143", "display_name": "Programming language", "level": 1, "score": 0.11138287 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C50522688", "wikidata": "https://www.wikidata.org/wiki/Q189833", "display_name": "Economic growth", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 2 }, { "year": 2023, "cited_by_count": 4 }, { "year": 2022, "cited_by_count": 4 }, { "year": 2021, "cited_by_count": 7 }, { "year": 2020, "cited_by_count": 2 }, { "year": 2019, "cited_by_count": 7 }, { "year": 2018, "cited_by_count": 7 }, { "year": 2017, "cited_by_count": 3 }, { "year": 2016, "cited_by_count": 3 }, { "year": 2015, "cited_by_count": 5 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "A cross-validation package driving Netica with python", "doi": "https://doi.org/10.1016/j.envsoft.2014.09.007", "fulltext_origin": "ngrams", "fwci": 6.013, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W1983416467", "ids": { "openalex": "https://openalex.org/W1983416467", "doi": "https://doi.org/10.1016/j.envsoft.2014.09.007", "mag": "1983416467" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 1, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/overfitting", "display_name": "Overfitting", "score": 0.9711819 }, { "id": "https://openalex.org/keywords/python", "display_name": "Python (programming language)", "score": 0.73592293 }, { "id": "https://openalex.org/keywords/cross-validation", "display_name": "Cross-validation", "score": 0.6095968 }, { "id": "https://openalex.org/keywords/optimization", "display_name": "Optimization", "score": 0.504492 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.envsoft.2014.09.007", "pdf_url": null, "source": { "id": "https://openalex.org/S113611870", "display_name": "Environmental Modelling & Software", "issn_l": "1364-8152", "issn": [ "1364-8152", "1873-6726" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W1983416467/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.envsoft.2014.09.007", "pdf_url": null, "source": { "id": "https://openalex.org/S113611870", "display_name": "Environmental Modelling & Software", "issn_l": "1364-8152", "issn": [ "1364-8152", "1873-6726" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9979, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2015-01-01", "publication_year": 2015, "referenced_works": [ "https://openalex.org/W141376853", "https://openalex.org/W1488679267", "https://openalex.org/W1509562192", "https://openalex.org/W1532221965", "https://openalex.org/W1541190072", "https://openalex.org/W1554944419", "https://openalex.org/W1598201578", "https://openalex.org/W1693305809", "https://openalex.org/W1755360231", "https://openalex.org/W1883185126", "https://openalex.org/W1981532962", "https://openalex.org/W1989020770", "https://openalex.org/W2032907044", "https://openalex.org/W2033904036", "https://openalex.org/W2044327045", "https://openalex.org/W2048076161", "https://openalex.org/W2049633694", "https://openalex.org/W2079087023", "https://openalex.org/W2083743686", "https://openalex.org/W2098487338", "https://openalex.org/W2130089609", "https://openalex.org/W2145691535", "https://openalex.org/W2155826788", "https://openalex.org/W2163134152", "https://openalex.org/W2242464395", "https://openalex.org/W2256314547", "https://openalex.org/W2545363345", "https://openalex.org/W2787894218", "https://openalex.org/W3005347330", "https://openalex.org/W4236619250", "https://openalex.org/W4299670631" ], "referenced_works_count": 31, "related_works": [ "https://openalex.org/W4378510483", "https://openalex.org/W4362597605", "https://openalex.org/W4297676672", "https://openalex.org/W4281702477", "https://openalex.org/W2922073769", "https://openalex.org/W2801469686", "https://openalex.org/W2149903055", "https://openalex.org/W2149651625", "https://openalex.org/W1983416467", "https://openalex.org/W1574414179" ], "sustainable_development_goals": [ { "score": 0.44, "id": "https://metadata.un.org/sdg/4", "display_name": "Quality education" } ], "title": "A cross-validation package driving Netica with python", "topics": [ { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9979, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "score": 0.9838, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11986", "display_name": "Management and Reproducibility of Scientific Workflows", "score": 0.9525, "subfield": { "id": "https://openalex.org/subfields/1802", "display_name": "Information Systems and Management" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T01:47:23.658016", "versions": [] }
}