Item talk:Q236547

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "A cross-validation package driving Netica with python",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70128127",
       "url": "https://pubs.usgs.gov/publication/70128127"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70128127
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1016/j.envsoft.2014.09.007",
       "url": "https://doi.org/10.1016/j.envsoft.2014.09.007"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Environmental Modelling and Software",
     "volumeNumber": "63",
     "issueNumber": null
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Environmental Modelling and Software"
     }
   ],
   "datePublished": "2014",
   "dateModified": "2014-10-03",
   "abstract": "Bayesian networks (BNs) are powerful tools for probabilistically simulating natural systems and emulating process models. Cross validation is a technique to avoid overfitting resulting from overly complex BNs. Overfitting reduces predictive skill. Cross-validation for BNs is known but rarely implemented due partly to a lack of software tools designed to work with available BN packages. CVNetica is open-source, written in Python, and extends the Netica software package to perform cross-validation and read, rebuild, and learn BNs from data. Insights gained from cross-validation and implications on prediction versus description are illustrated with: a data-driven oceanographic application; and a model-emulation application. These examples show that overfitting occurs when BNs become more complex than allowed by supporting data and overfitting incurs computational costs as well as causing a reduction in prediction skill. CVNetica evaluates overfitting using several complexity metrics (we used level of discretization) and its impact on performance metrics (we used skill).",
   "description": "10 p.",
   "publisher": {
     "@type": "Organization",
     "name": "Elsevier"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Fienen, Michael N. mnfienen@usgs.gov",
       "givenName": "Michael N.",
       "familyName": "Fienen",
       "email": "mnfienen@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-7756-4651",
         "url": "https://orcid.org/0000-0002-7756-4651"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Wisconsin Water Science Center",
           "url": "https://www.usgs.gov/centers/upper-midwest-water-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Plant, Nathaniel G. nplant@usgs.gov",
       "givenName": "Nathaniel G.",
       "familyName": "Plant",
       "email": "nplant@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-5703-5672",
         "url": "https://orcid.org/0000-0002-5703-5672"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "St. Petersburg Coastal and Marine Science Center",
           "url": "https://www.usgs.gov/centers/spcmsc"
         },
         {
           "@type": "Organization",
           "name": "Office of the AD Hazards",
           "url": "https://www.usgs.gov/mission-areas/natural-hazards"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Wisconsin Water Science Center",
       "url": "https://www.usgs.gov/centers/upper-midwest-water-science-center"
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "Bayesian": [
       0
     ],
     "networks": [
       1
     ],
     "(BNs)": [
       2
     ],
     "are": [
       3,
       88
     ],
     "powerful": [
       4
     ],
     "tools": [
       5,
       47
     ],
     "for": [
       6,
       33
     ],
     "probabilistically": [
       7
     ],
     "simulating": [
       8
     ],
     "natural": [
       9
     ],
     "systems": [
       10
     ],
     "and": [
       11,
       61,
       70,
       73,
       82,
       95,
       115,
       141
     ],
     "emulating": [
       12
     ],
     "process": [
       13
     ],
     "models.": [
       14
     ],
     "Cross": [
       15
     ],
     "validation": [
       16
     ],
     "is": [
       17,
       35,
       56
     ],
     "a": [
       18,
       43,
       91,
       96,
       124
     ],
     "technique": [
       19
     ],
     "to": [
       20,
       42,
       49,
       67
     ],
     "avoid": [
       21
     ],
     "overfitting": [
       22,
       103,
       116,
       131
     ],
     "resulting": [
       23
     ],
     "from": [
       24,
       76,
       80
     ],
     "overly": [
       25
     ],
     "complex": [
       26,
       109
     ],
     "BNs.": [
       27
     ],
     "Overfitting": [
       28
     ],
     "reduces": [
       29
     ],
     "predictive": [
       30
     ],
     "skill.": [
       31,
       128
     ],
     "Cross-validation": [
       32
     ],
     "BNs": [
       34,
       75,
       106
     ],
     "known": [
       36
     ],
     "but": [
       37
     ],
     "rarely": [
       38
     ],
     "implemented": [
       39
     ],
     "due": [
       40
     ],
     "partly": [
       41
     ],
     "lack": [
       44
     ],
     "of": [
       45,
       139
     ],
     "software": [
       46,
       65
     ],
     "designed": [
       48
     ],
     "work": [
       50
     ],
     "with": [
       51
     ],
     "available": [
       52
     ],
     "BN": [
       53
     ],
     "packages.": [
       54
     ],
     "CVNetica": [
       55,
       129
     ],
     "open-source,": [
       57
     ],
     "written": [
       58
     ],
     "in": [
       59,
       126
     ],
     "Python,": [
       60
     ],
     "extends": [
       62
     ],
     "the": [
       63
     ],
     "Netica": [
       64
     ],
     "package": [
       66
     ],
     "perform": [
       68
     ],
     "cross-validation": [
       69,
       81
     ],
     "read,": [
       71
     ],
     "rebuild,": [
       72
     ],
     "learn": [
       74
     ],
     "data.": [
       77
     ],
     "Insights": [
       78
     ],
     "gained": [
       79
     ],
     "implications": [
       83
     ],
     "on": [
       84,
       144
     ],
     "prediction": [
       85,
       127
     ],
     "versus": [
       86
     ],
     "description": [
       87
     ],
     "illustrated": [
       89
     ],
     "with:": [
       90
     ],
     "data-driven": [
       92
     ],
     "oceanographic": [
       93
     ],
     "application;": [
       94
     ],
     "model-emulation": [
       97
     ],
     "application.": [
       98
     ],
     "These": [
       99
     ],
     "examples": [
       100
     ],
     "show": [
       101
     ],
     "that": [
       102
     ],
     "occurs": [
       104
     ],
     "when": [
       105
     ],
     "become": [
       107
     ],
     "more": [
       108
     ],
     "than": [
       110
     ],
     "allowed": [
       111
     ],
     "by": [
       112
     ],
     "supporting": [
       113
     ],
     "data": [
       114
     ],
     "incurs": [
       117
     ],
     "computational": [
       118
     ],
     "costs": [
       119
     ],
     "as": [
       120,
       122
     ],
     "well": [
       121
     ],
     "causing": [
       123
     ],
     "reduction": [
       125
     ],
     "evaluates": [
       130
     ],
     "using": [
       132
     ],
     "several": [
       133
     ],
     "complexity": [
       134
     ],
     "metrics": [
       135,
       146
     ],
     "(we": [
       136,
       147
     ],
     "used": [
       137,
       148
     ],
     "level": [
       138
     ],
     "discretization)": [
       140
     ],
     "its": [
       142
     ],
     "impact": [
       143
     ],
     "performance": [
       145
     ],
     "skill).": [
       149
     ]
   },
   "apc_list": {
     "value": 3400,
     "currency": "USD",
     "value_usd": 3400,
     "provenance": "doaj"
   },
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5081887696",
         "display_name": "Michael N. Fienen",
         "orcid": "https://orcid.org/0000-0002-7756-4651"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Michael N. Fienen",
       "raw_affiliation_strings": [
         "US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA."
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5065618772",
         "display_name": "Nathaniel G. Plant",
         "orcid": "https://orcid.org/0000-0002-5703-5672"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Nathaniel G. Plant",
       "raw_affiliation_strings": [
         "US Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 Fourth Street South, St. Petersburg, FL 33701, USA#TAB#"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "US Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 Fourth Street South, St. Petersburg, FL 33701, USA#TAB#",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": null,
   "biblio": {
     "volume": "63",
     "issue": null,
     "first_page": "14",
     "last_page": "23"
   },
   "citation_normalized_percentile": {
     "value": 0.999968,
     "is_in_top_1_percent": true,
     "is_in_top_10_percent": true
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1983416467",
   "cited_by_count": 47,
   "cited_by_percentile_year": {
     "min": 96,
     "max": 97
   },
   "concepts": [
     {
       "id": "https://openalex.org/C22019652",
       "wikidata": "https://www.wikidata.org/wiki/Q331309",
       "display_name": "Overfitting",
       "level": 3,
       "score": 0.9711819
     },
     {
       "id": "https://openalex.org/C519991488",
       "wikidata": "https://www.wikidata.org/wiki/Q28865",
       "display_name": "Python (programming language)",
       "level": 2,
       "score": 0.73592293
     },
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 0.7342191
     },
     {
       "id": "https://openalex.org/C119857082",
       "wikidata": "https://www.wikidata.org/wiki/Q2539",
       "display_name": "Machine learning",
       "level": 1,
       "score": 0.6903952
     },
     {
       "id": "https://openalex.org/C27181475",
       "wikidata": "https://www.wikidata.org/wiki/Q541014",
       "display_name": "Cross-validation",
       "level": 2,
       "score": 0.6095968
     },
     {
       "id": "https://openalex.org/C149810388",
       "wikidata": "https://www.wikidata.org/wiki/Q5374873",
       "display_name": "Emulation",
       "level": 2,
       "score": 0.6009559
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 0.5956933
     },
     {
       "id": "https://openalex.org/C124101348",
       "wikidata": "https://www.wikidata.org/wiki/Q172491",
       "display_name": "Data mining",
       "level": 1,
       "score": 0.49534097
     },
     {
       "id": "https://openalex.org/C2777904410",
       "wikidata": "https://www.wikidata.org/wiki/Q7397",
       "display_name": "Software",
       "level": 2,
       "score": 0.45933902
     },
     {
       "id": "https://openalex.org/C107673813",
       "wikidata": "https://www.wikidata.org/wiki/Q812534",
       "display_name": "Bayesian probability",
       "level": 2,
       "score": 0.42313325
     },
     {
       "id": "https://openalex.org/C98045186",
       "wikidata": "https://www.wikidata.org/wiki/Q205663",
       "display_name": "Process (computing)",
       "level": 2,
       "score": 0.4208276
     },
     {
       "id": "https://openalex.org/C50644808",
       "wikidata": "https://www.wikidata.org/wiki/Q192776",
       "display_name": "Artificial neural network",
       "level": 2,
       "score": 0.12101033
     },
     {
       "id": "https://openalex.org/C199360897",
       "wikidata": "https://www.wikidata.org/wiki/Q9143",
       "display_name": "Programming language",
       "level": 1,
       "score": 0.11138287
     },
     {
       "id": "https://openalex.org/C162324750",
       "wikidata": "https://www.wikidata.org/wiki/Q8134",
       "display_name": "Economics",
       "level": 0,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C50522688",
       "wikidata": "https://www.wikidata.org/wiki/Q189833",
       "display_name": "Economic growth",
       "level": 1,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 1,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 2
     },
     {
       "year": 2023,
       "cited_by_count": 4
     },
     {
       "year": 2022,
       "cited_by_count": 4
     },
     {
       "year": 2021,
       "cited_by_count": 7
     },
     {
       "year": 2020,
       "cited_by_count": 2
     },
     {
       "year": 2019,
       "cited_by_count": 7
     },
     {
       "year": 2018,
       "cited_by_count": 7
     },
     {
       "year": 2017,
       "cited_by_count": 3
     },
     {
       "year": 2016,
       "cited_by_count": 3
     },
     {
       "year": 2015,
       "cited_by_count": 5
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "A cross-validation package driving Netica with python",
   "doi": "https://doi.org/10.1016/j.envsoft.2014.09.007",
   "fulltext_origin": "ngrams",
   "fwci": 6.013,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W1983416467",
   "ids": {
     "openalex": "https://openalex.org/W1983416467",
     "doi": "https://doi.org/10.1016/j.envsoft.2014.09.007",
     "mag": "1983416467"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 1,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/overfitting",
       "display_name": "Overfitting",
       "score": 0.9711819
     },
     {
       "id": "https://openalex.org/keywords/python",
       "display_name": "Python (programming language)",
       "score": 0.73592293
     },
     {
       "id": "https://openalex.org/keywords/cross-validation",
       "display_name": "Cross-validation",
       "score": 0.6095968
     },
     {
       "id": "https://openalex.org/keywords/optimization",
       "display_name": "Optimization",
       "score": 0.504492
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": false,
       "landing_page_url": "https://doi.org/10.1016/j.envsoft.2014.09.007",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S113611870",
         "display_name": "Environmental Modelling & Software",
         "issn_l": "1364-8152",
         "issn": [
           "1364-8152",
           "1873-6726"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320990",
         "host_organization_name": "Elsevier BV",
         "host_organization_lineage": [
           "https://openalex.org/P4310320990"
         ],
         "host_organization_lineage_names": [
           "Elsevier BV"
         ],
         "type": "journal"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W1983416467/ngrams",
   "open_access": {
     "is_oa": false,
     "oa_status": "closed",
     "oa_url": null,
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": false,
     "landing_page_url": "https://doi.org/10.1016/j.envsoft.2014.09.007",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S113611870",
       "display_name": "Environmental Modelling & Software",
       "issn_l": "1364-8152",
       "issn": [
         "1364-8152",
         "1873-6726"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320990",
       "host_organization_name": "Elsevier BV",
       "host_organization_lineage": [
         "https://openalex.org/P4310320990"
       ],
       "host_organization_lineage_names": [
         "Elsevier BV"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": null,
     "is_accepted": false,
     "is_published": false
   },
   "primary_topic": {
     "id": "https://openalex.org/T11303",
     "display_name": "Learning and Inference in Bayesian Networks",
     "score": 0.9979,
     "subfield": {
       "id": "https://openalex.org/subfields/1702",
       "display_name": "Artificial Intelligence"
     },
     "field": {
       "id": "https://openalex.org/fields/17",
       "display_name": "Computer Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2015-01-01",
   "publication_year": 2015,
   "referenced_works": [
     "https://openalex.org/W141376853",
     "https://openalex.org/W1488679267",
     "https://openalex.org/W1509562192",
     "https://openalex.org/W1532221965",
     "https://openalex.org/W1541190072",
     "https://openalex.org/W1554944419",
     "https://openalex.org/W1598201578",
     "https://openalex.org/W1693305809",
     "https://openalex.org/W1755360231",
     "https://openalex.org/W1883185126",
     "https://openalex.org/W1981532962",
     "https://openalex.org/W1989020770",
     "https://openalex.org/W2032907044",
     "https://openalex.org/W2033904036",
     "https://openalex.org/W2044327045",
     "https://openalex.org/W2048076161",
     "https://openalex.org/W2049633694",
     "https://openalex.org/W2079087023",
     "https://openalex.org/W2083743686",
     "https://openalex.org/W2098487338",
     "https://openalex.org/W2130089609",
     "https://openalex.org/W2145691535",
     "https://openalex.org/W2155826788",
     "https://openalex.org/W2163134152",
     "https://openalex.org/W2242464395",
     "https://openalex.org/W2256314547",
     "https://openalex.org/W2545363345",
     "https://openalex.org/W2787894218",
     "https://openalex.org/W3005347330",
     "https://openalex.org/W4236619250",
     "https://openalex.org/W4299670631"
   ],
   "referenced_works_count": 31,
   "related_works": [
     "https://openalex.org/W4378510483",
     "https://openalex.org/W4362597605",
     "https://openalex.org/W4297676672",
     "https://openalex.org/W4281702477",
     "https://openalex.org/W2922073769",
     "https://openalex.org/W2801469686",
     "https://openalex.org/W2149903055",
     "https://openalex.org/W2149651625",
     "https://openalex.org/W1983416467",
     "https://openalex.org/W1574414179"
   ],
   "sustainable_development_goals": [
     {
       "score": 0.44,
       "id": "https://metadata.un.org/sdg/4",
       "display_name": "Quality education"
     }
   ],
   "title": "A cross-validation package driving Netica with python",
   "topics": [
     {
       "id": "https://openalex.org/T11303",
       "display_name": "Learning and Inference in Bayesian Networks",
       "score": 0.9979,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11801",
       "display_name": "Advanced Techniques in Reservoir Management",
       "score": 0.9838,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11986",
       "display_name": "Management and Reproducibility of Scientific Workflows",
       "score": 0.9525,
       "subfield": {
         "id": "https://openalex.org/subfields/1802",
         "display_name": "Information Systems and Management"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-15T01:47:23.658016",
   "versions": []
 }

}