Item talk:Q235282

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "CreativeWork",
   "additionalType": "Conference Paper",
   "name": "Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70023672",
       "url": "https://pubs.usgs.gov/publication/70023672"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70023672
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1117/12.438256",
       "url": "https://doi.org/10.1117/12.438256"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "ISSN",
       "value": "0277786X"
     }
   ],
   "inLanguage": "en",
   "datePublished": "2001",
   "dateModified": "2012-03-12",
   "abstract": "The enhanced thematic mapper (plus) (ETM+) instrument on Landsat 7 shares the same basic design as the TM sensors on Landsats 4 and 5, with some significant improvements. In common are six multispectral bands with a 30-m ground-projected instantaneous field of view (GIFOV). However, the thermaL-IR (TIR) band now has a 60-m GIFOV, instead of 120-m. Also, a 15-m panchromatic band has been added. The artificial neural network (NN) image sharpening method described here uses data from the higher spatial resolution ETM+ bands to enhance (sharpen) the spatial resolution of the TIR imagery. It is based on an assumed correlation over multiple scales of resolution, between image edge contrast patterns in the TIR band and several other spectral bands. A multilayer, feedforward NN is trained to approximate TIR data at 60m, given degraded (from 30-m to 60-m) spatial resolution input from spectral bands 7, 5, and 2. After training, the NN output for full-resolution input generates an approximation of a TIR image at 30-m resolution. Two methods are used to degrade the spatial resolution of the imagery used for NN training, and the corresponding sharpening results are compared. One degradation method uses a published sensor transfer function (TF) for Landsat 5 to simulate sensor coarser resolution imagery from higher resolution imagery. For comparison, the second degradation method is simply Gaussian low pass filtering and subsampling, wherein the Gaussian filter approximates the full width at half maximum amplitude characteristics of the TF-based spatial filter. Two fixed-size NNs (that is, number of weights and processing elements) were trained separately with the degraded resolution data, and the sharpening results compared. The comparison evaluates the relative influence of the degradation technique employed and whether or not it is desirable to incorporate a sensor TF model. Preliminary results indicate some improvements for the sensor model-based technique. Further evaluation using a higher resolution reference image and strict application of sensor model to data is recommended.",
   "publisher": {
     "@type": "Organization",
     "name": "U.S. Geological Survey"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Schowengerdt, R.A.",
       "givenName": "R.A.",
       "familyName": "Schowengerdt"
     },
     {
       "@type": "Person",
       "name": "Lemeshewsky, G.P.",
       "givenName": "G.P.",
       "familyName": "Lemeshewsky"
     }
   ],
   "editor": [
     {
       "@type": "Organization",
       "name": "Park S.K.Rahman Z.Schowengerdt R.A."
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "The": [
       0,
       65,
       267
     ],
     "enhanced": [
       1
     ],
     "thematic": [
       2
     ],
     "mapper": [
       3
     ],
     "(plus)(ETM+)": [
       4
     ],
     "instrument": [
       5
     ],
     "on": [
       6,
       18,
       97
     ],
     "Landsat": [
       7,
       199
     ],
     "7": [
       8
     ],
     "shares": [
       9
     ],
     "the": [
       10,
       15,
       44,
       78,
       87,
       91,
       112,
       149,
       171,
       175,
       182,
       213,
       226,
       230,
       239,
       258,
       263,
       270,
       274,
       297
     ],
     "same": [
       11
     ],
     "basic": [
       12
     ],
     "design": [
       13
     ],
     "as": [
       14
     ],
     "TM": [
       16
     ],
     "sensors": [
       17
     ],
     "Landsats": [
       19
     ],
     "4": [
       20
     ],
     "and": [
       21,
       115,
       145,
       181,
       223,
       251,
       262,
       278,
       309
     ],
     "5,": [
       22
     ],
     "with": [
       23,
       33,
       257
     ],
     "some": [
       24,
       294
     ],
     "significanti": [
       25
     ],
     "mprovements.": [
       26
     ],
     "In": [
       27
     ],
     "common": [
       28
     ],
     "are": [
       29,
       167,
       186
     ],
     "six": [
       30
     ],
     "multispetral": [
       31
     ],
     "bands": [
       32,
       83,
       143
     ],
     "a": [
       34,
       50,
       58,
       159,
       192,
       287,
       304
     ],
     "30-m": [
       35,
       135,
       163
     ],
     "ground": [
       36
     ],
     "projected": [
       37
     ],
     "instantaneous": [
       38
     ],
     "field": [
       39
     ],
     "of": [
       40,
       54,
       90,
       104,
       158,
       174,
       238,
       249,
       273,
       312
     ],
     "view": [
       41
     ],
     "(GIFOV).": [
       42
     ],
     "However,": [
       43
     ],
     "thermal-IR": [
       45
     ],
     "(TIR)": [
       46
     ],
     "band": [
       47,
       61,
       114
     ],
     "now": [
       48
     ],
     "has": [
       49,
       62
     ],
     "60-m": [
       51
     ],
     "GIFOV,": [
       52
     ],
     "instead": [
       53
     ],
     "120-": [
       55
     ],
     "m.": [
       56
     ],
     "Also,": [
       57
     ],
     "15-m": [
       59
     ],
     "panchromatic": [
       60
     ],
     "been": [
       63
     ],
     "added.": [
       64
     ],
     "artificial": [
       66
     ],
     "neural": [
       67
     ],
     "network": [
       68
     ],
     "(NN)": [
       69
     ],
     "image": [
       70,
       107,
       161,
       308
     ],
     "sharpening": [
       71,
       184,
       264
     ],
     "method": [
       72,
       190,
       216
     ],
     "described": [
       73
     ],
     "here": [
       74
     ],
     "uses": [
       75,
       191
     ],
     "data": [
       76,
       129,
       316
     ],
     "form": [
       77,
       207
     ],
     "higher": [
       79,
       208,
       305
     ],
     "spatial": [
       80,
       88,
       138,
       172,
       241
     ],
     "resolution": [
       81,
       89,
       139,
       173,
       205,
       209,
       260,
       306
     ],
     "ETM+": [
       82
     ],
     "to": [
       84,
       126,
       136,
       169,
       201,
       285,
       315
     ],
     "enhance": [
       85
     ],
     "(sharpen)": [
       86
     ],
     "TIR": [
       92,
       113,
       128,
       160
     ],
     "imagery.": [
       93,
       210
     ],
     "It": [
       94
     ],
     "is": [
       95,
       124,
       217,
       283,
       317
     ],
     "based": [
       96
     ],
     "an": [
       98,
       156
     ],
     "assumed": [
       99
     ],
     "correlation": [
       100
     ],
     "over": [
       101
     ],
     "multiple": [
       102
     ],
     "scales": [
       103
     ],
     "resolution,": [
       105
     ],
     "between": [
       106
     ],
     "edge": [
       108
     ],
     "contrast": [
       109
     ],
     "patterns": [
       110
     ],
     "in": [
       111
     ],
     "several": [
       116
     ],
     "other": [
       117
     ],
     "spectral": [
       118,
       142
     ],
     "bands.": [
       119
     ],
     "A": [
       120
     ],
     "multilayer,": [
       121
     ],
     "feedforward": [
       122
     ],
     "NN": [
       123,
       150,
       179
     ],
     "trained": [
       125,
       255
     ],
     "approximate": [
       127
     ],
     "at": [
       130,
       162,
       233
     ],
     "60m,": [
       131
     ],
     "given": [
       132
     ],
     "degraded": [
       133,
       259
     ],
     "(from": [
       134
     ],
     "60-m)": [
       137
     ],
     "input": [
       140,
       154
     ],
     "from": [
       141
     ],
     "7,5,": [
       144
     ],
     "2.": [
       146
     ],
     "After": [
       147
     ],
     "training,": [
       148,
       180
     ],
     "output": [
       151
     ],
     "for": [
       152,
       178,
       198,
       296
     ],
     "full-resolution": [
       153
     ],
     "generates": [
       155
     ],
     "approximation": [
       157
     ],
     "resolution.": [
       164
     ],
     "Two": [
       165,
       243
     ],
     "methods": [
       166
     ],
     "used": [
       168,
       177
     ],
     "degrade": [
       170
     ],
     "imagery": [
       176,
       206
     ],
     "corresponding": [
       183
     ],
     "results": [
       185,
       265,
       292
     ],
     "compared.": [
       187,
       266
     ],
     "One": [
       188
     ],
     "degradation": [
       189,
       215,
       275
     ],
     "published": [
       193
     ],
     "sensor": [
       194,
       203,
       288,
       298,
       313
     ],
     "transfer": [
       195
     ],
     "function": [
       196
     ],
     "(TR)": [
       197
     ],
     "5": [
       200
     ],
     "simulate": [
       202
     ],
     "coarser": [
       204
     ],
     "For": [
       211
     ],
     "comparison,": [
       212
     ],
     "second": [
       214
     ],
     "simply": [
       218
     ],
     "Gaussian": [
       219,
       227
     ],
     "low": [
       220
     ],
     "pass": [
       221
     ],
     "filtering": [
       222
     ],
     "subsampling,": [
       224
     ],
     "wherein": [
       225
     ],
     "filter": [
       228
     ],
     "approximates": [
       229
     ],
     "full": [
       231
     ],
     "width": [
       232
     ],
     "half": [
       234
     ],
     "maximum": [
       235
     ],
     "amplitude": [
       236
     ],
     "characteristics": [
       237
     ],
     "TF-based": [
       240
     ],
     "filter.": [
       242
     ],
     "fixed-size": [
       244
     ],
     "Nns": [
       245
     ],
     "(that": [
       246
     ],
     "is,": [
       247
     ],
     "number": [
       248
     ],
     "weights": [
       250
     ],
     "processing": [
       252
     ],
     "elements)": [
       253
     ],
     "were": [
       254
     ],
     "separately": [
       256
     ],
     "data,": [
       261
     ],
     "comparison": [
       268
     ],
     "evaluates": [
       269
     ],
     "relative": [
       271
     ],
     "influence": [
       272
     ],
     "technique": [
       276
     ],
     "employed": [
       277
     ],
     "whether": [
       279
     ],
     "or": [
       280
     ],
     "not": [
       281
     ],
     "it": [
       282
     ],
     "desirable": [
       284
     ],
     "incorporate": [
       286
     ],
     "TF": [
       289
     ],
     "model.": [
       290
     ],
     "Preliminary": [
       291
     ],
     "indicate": [
       293
     ],
     "improvements": [
       295
     ],
     "model-based": [
       299
     ],
     "technique.": [
       300
     ],
     "Further": [
       301
     ],
     "evaluation": [
       302
     ],
     "using": [
       303
     ],
     "reference": [
       307
     ],
     "strict": [
       310
     ],
     "application": [
       311
     ],
     "model": [
       314
     ],
     "recommended.": [
       318
     ]
   },
   "apc_list": null,
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5018794849",
         "display_name": "George P. Lemeshewsky",
         "orcid": null
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "George P. Lemeshewsky",
       "raw_affiliation_strings": [
         "U.S. Geological Survey, United States"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "U.S. Geological Survey, United States",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5002761375",
         "display_name": "Robert A. Schowengerdt",
         "orcid": null
       },
       "institutions": [
         {
           "id": "https://openalex.org/I138006243",
           "display_name": "University of Arizona",
           "ror": "https://ror.org/03m2x1q45",
           "country_code": "US",
           "type": "education",
           "lineage": [
             "https://openalex.org/I138006243"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Robert A. Schowengerdt",
       "raw_affiliation_strings": [
         "University of Arizona. (United States)"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "University of Arizona. (United States)",
           "institution_ids": [
             "https://openalex.org/I138006243"
           ]
         }
       ]
     }
   ],
   "best_oa_location": null,
   "biblio": {
     "volume": null,
     "issue": null,
     "first_page": null,
     "last_page": null
   },
   "citation_normalized_percentile": {
     "value": 0.834577,
     "is_in_top_1_percent": false,
     "is_in_top_10_percent": false
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1993082942",
   "cited_by_count": 8,
   "cited_by_percentile_year": {
     "min": 79,
     "max": 80
   },
   "concepts": [
     {
       "id": "https://openalex.org/C2781137444",
       "wikidata": "https://www.wikidata.org/wiki/Q237105",
       "display_name": "Sharpening",
       "level": 2,
       "score": 0.84186995
     },
     {
       "id": "https://openalex.org/C205372480",
       "wikidata": "https://www.wikidata.org/wiki/Q210521",
       "display_name": "Image resolution",
       "level": 2,
       "score": 0.7397635
     },
     {
       "id": "https://openalex.org/C2775938548",
       "wikidata": "https://www.wikidata.org/wiki/Q1565182",
       "display_name": "Thematic Mapper",
       "level": 3,
       "score": 0.73924005
     },
     {
       "id": "https://openalex.org/C107445234",
       "wikidata": "https://www.wikidata.org/wiki/Q280995",
       "display_name": "Panchromatic film",
       "level": 3,
       "score": 0.6932874
     },
     {
       "id": "https://openalex.org/C62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 0.6227764
     },
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 0.58009607
     },
     {
       "id": "https://openalex.org/C50644808",
       "wikidata": "https://www.wikidata.org/wiki/Q192776",
       "display_name": "Artificial neural network",
       "level": 2,
       "score": 0.5209454
     },
     {
       "id": "https://openalex.org/C65892221",
       "wikidata": "https://www.wikidata.org/wiki/Q1113935",
       "display_name": "Gaussian filter",
       "level": 3,
       "score": 0.51883686
     },
     {
       "id": "https://openalex.org/C163716315",
       "wikidata": "https://www.wikidata.org/wiki/Q901177",
       "display_name": "Gaussian",
       "level": 2,
       "score": 0.4953145
     },
     {
       "id": "https://openalex.org/C175231954",
       "wikidata": "https://www.wikidata.org/wiki/Q1942321",
       "display_name": "Optical transfer function",
       "level": 2,
       "score": 0.48879907
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 0.48660815
     },
     {
       "id": "https://openalex.org/C106131492",
       "wikidata": "https://www.wikidata.org/wiki/Q3072260",
       "display_name": "Filter (signal processing)",
       "level": 2,
       "score": 0.4414261
     },
     {
       "id": "https://openalex.org/C114700698",
       "wikidata": "https://www.wikidata.org/wiki/Q2882278",
       "display_name": "Spectral bands",
       "level": 2,
       "score": 0.4370148
     },
     {
       "id": "https://openalex.org/C160633673",
       "wikidata": "https://www.wikidata.org/wiki/Q355198",
       "display_name": "Pixel",
       "level": 2,
       "score": 0.4314153
     },
     {
       "id": "https://openalex.org/C31972630",
       "wikidata": "https://www.wikidata.org/wiki/Q844240",
       "display_name": "Computer vision",
       "level": 1,
       "score": 0.37219384
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 0.2974267
     },
     {
       "id": "https://openalex.org/C120665830",
       "wikidata": "https://www.wikidata.org/wiki/Q14620",
       "display_name": "Optics",
       "level": 1,
       "score": 0.29256058
     },
     {
       "id": "https://openalex.org/C115961682",
       "wikidata": "https://www.wikidata.org/wiki/Q860623",
       "display_name": "Image (mathematics)",
       "level": 2,
       "score": 0.23480102
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.13866603
     },
     {
       "id": "https://openalex.org/C2778102629",
       "wikidata": "https://www.wikidata.org/wiki/Q725252",
       "display_name": "Satellite imagery",
       "level": 2,
       "score": 0.11093366
     },
     {
       "id": "https://openalex.org/C62520636",
       "wikidata": "https://www.wikidata.org/wiki/Q944",
       "display_name": "Quantum mechanics",
       "level": 1,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 1,
   "counts_by_year": [
     {
       "year": 2019,
       "cited_by_count": 1
     },
     {
       "year": 2018,
       "cited_by_count": 1
     },
     {
       "year": 2014,
       "cited_by_count": 1
     },
     {
       "year": 2013,
       "cited_by_count": 1
     },
     {
       "year": 2012,
       "cited_by_count": 1
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "<title>Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model</title>",
   "doi": "https://doi.org/10.1117/12.438256",
   "fulltext_origin": "ngrams",
   "fwci": 0.847,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W1993082942",
   "ids": {
     "openalex": "https://openalex.org/W1993082942",
     "doi": "https://doi.org/10.1117/12.438256",
     "mag": "1993082942"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 2,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/sharpening",
       "display_name": "Sharpening",
       "score": 0.84186995
     },
     {
       "id": "https://openalex.org/keywords/thematic-mapper",
       "display_name": "Thematic Mapper",
       "score": 0.73924005
     },
     {
       "id": "https://openalex.org/keywords/panchromatic-film",
       "display_name": "Panchromatic film",
       "score": 0.6932874
     },
     {
       "id": "https://openalex.org/keywords/gaussian-filter",
       "display_name": "Gaussian filter",
       "score": 0.51883686
     },
     {
       "id": "https://openalex.org/keywords/multispectral",
       "display_name": "Multispectral",
       "score": 0.506842
     },
     {
       "id": "https://openalex.org/keywords/optical-transfer-function",
       "display_name": "Optical transfer function",
       "score": 0.48879907
     },
     {
       "id": "https://openalex.org/keywords/spectral-bands",
       "display_name": "Spectral bands",
       "score": 0.4370148
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": false,
       "landing_page_url": "https://doi.org/10.1117/12.438256",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S183492911",
         "display_name": "Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE",
         "issn_l": "0277-786X",
         "issn": [
           "0277-786X",
           "1996-756X"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310315543",
         "host_organization_name": "SPIE",
         "host_organization_lineage": [
           "https://openalex.org/P4310315543"
         ],
         "host_organization_lineage_names": [
           "SPIE"
         ],
         "type": "journal"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W1993082942/ngrams",
   "open_access": {
     "is_oa": false,
     "oa_status": "closed",
     "oa_url": null,
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": false,
     "landing_page_url": "https://doi.org/10.1117/12.438256",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S183492911",
       "display_name": "Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE",
       "issn_l": "0277-786X",
       "issn": [
         "0277-786X",
         "1996-756X"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310315543",
       "host_organization_name": "SPIE",
       "host_organization_lineage": [
         "https://openalex.org/P4310315543"
       ],
       "host_organization_lineage_names": [
         "SPIE"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": null,
     "is_accepted": false,
     "is_published": false
   },
   "primary_topic": {
     "id": "https://openalex.org/T12389",
     "display_name": "Infrared Small Target Detection and Tracking",
     "score": 0.9951,
     "subfield": {
       "id": "https://openalex.org/subfields/2202",
       "display_name": "Aerospace Engineering"
     },
     "field": {
       "id": "https://openalex.org/fields/22",
       "display_name": "Engineering"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2001-08-28",
   "publication_year": 2001,
   "referenced_works": [],
   "referenced_works_count": 0,
   "related_works": [
     "https://openalex.org/W4313315820",
     "https://openalex.org/W4254327447",
     "https://openalex.org/W2816335205",
     "https://openalex.org/W2182807969",
     "https://openalex.org/W2158398018",
     "https://openalex.org/W2158371478",
     "https://openalex.org/W2158027388",
     "https://openalex.org/W2084382156",
     "https://openalex.org/W2033186943",
     "https://openalex.org/W2019692878"
   ],
   "sustainable_development_goals": [],
   "title": "<title>Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model</title>",
   "topics": [
     {
       "id": "https://openalex.org/T12389",
       "display_name": "Infrared Small Target Detection and Tracking",
       "score": 0.9951,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11659",
       "display_name": "Multispectral and Hyperspectral Image Fusion",
       "score": 0.9917,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12019",
       "display_name": "Radiometric Calibration and Performance Monitoring",
       "score": 0.9861,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "proceedings-article",
   "updated_date": "2024-08-12T22:43:44.626277",
   "versions": []
 }

}