Item talk:Q234475

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70160007",
       "url": "https://pubs.usgs.gov/publication/70160007"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70160007
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1016/j.isprsjprs.2015.08.001",
       "url": "https://doi.org/10.1016/j.isprsjprs.2015.08.001"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "ISPRS Journal of Photogrammetry and Remote Sensing",
     "volumeNumber": "108",
     "issueNumber": null
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "ISPRS Journal of Photogrammetry and Remote Sensing"
     }
   ],
   "datePublished": "2015",
   "dateModified": "2016-01-06",
   "abstract": "Crop biomass is increasingly being measured with surface reflectance data derived from multispectral broadband (MSBB) and hyperspectral narrowband (HNB) space-borne remotely sensed data to increase the accuracy and efficiency of crop yield models used in a wide array of agricultural applications. However, few studies compare the ability of MSBBs versus HNBs to capture crop biomass variability. Therefore, we used standard data mining techniques to identify a set of MSBB data from the IKONOS, GeoEye-1, Landsat ETM+, MODIS, WorldView-2 sensors and compared their performance with HNB data from the EO-1 Hyperion sensor in explaining crop biomass variability of four important field crops (rice, alfalfa, cotton, maize). The analysis employed two-band (ratio) vegetation indices (TBVIs) and multiband (additive) vegetation indices (MBVIs) derived from Singular Value Decomposition (SVD) and stepwise regression. Results demonstrated that HNB-derived TBVIs and MBVIs performed better than MSBB-derived TBVIs and MBVIs on a per crop basis and for the pooled data: overall, HNB TBVIs explained 5\u201331% greater variability when compared with various MSBB TBVIs; and HNB MBVIs explained 3\u201333% greater variability when compared with various MSBB MBVIs. The performance of MSBB MBVIs and TBVIs improved mildly, by combining spectral information across multiple sensors involving IKONOS, GeoEye-1, Landsat ETM+, MODIS, and WorldView-2. A number of HNBs that advance crop biomass modeling were determined. Based on the highest factor loadings on the first component of the SVD, the \u201cred-edge\u201d spectral range (700\u2013740 nm) centered at 722 nm (bandwidth = 10 nm) stood out prominently, while five additional and distinct portions of the recorded spectral range (400\u20132500 nm) centered at 539 nm, 758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth = 10 nm) were also important. The best HNB vegetation indices for crop biomass estimation involved 549 and 752 nm for rice (R2 = 0.91); 925 and 1104 nm for alfalfa (R2 = 0.81); 722 and 732 nm for cotton (R2 = 0.97); and 529 and 895 nm for maize (R2 = 0.94). The higher spectral resolution of the EO-1 Hyperion hyperspectral sensor and the ability of users to choose distinct HNBs for improved crop biomass estimation outweigh the benefits that come with higher spatial resolution of MSBBs.",
   "description": "14 p.",
   "publisher": {
     "@type": "Organization",
     "name": "Elsevier"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Marshall, Michael T. mmarshall@usgs.gov",
       "givenName": "Michael T.",
       "familyName": "Marshall",
       "email": "mmarshall@usgs.gov",
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Western Geographic Science Center",
           "url": "https://www.usgs.gov/centers/western-geographic-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Thenkabail, Prasad S. pthenkabail@usgs.gov",
       "givenName": "Prasad S.",
       "familyName": "Thenkabail",
       "email": "pthenkabail@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-2182-8822",
         "url": "https://orcid.org/0000-0002-2182-8822"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Western Geographic Science Center",
           "url": "https://www.usgs.gov/centers/western-geographic-science-center"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Western Geographic Science Center",
       "url": "https://www.usgs.gov/centers/western-geographic-science-center"
     }
   ],
   "spatialCoverage": [
     {
       "@type": "Place",
       "additionalType": "country",
       "name": "United States",
       "url": "https://geonames.org/4074035"
     },
     {
       "@type": "Place",
       "additionalType": "state",
       "name": "California"
     },
     {
       "@type": "Place",
       "geo": [
         {
           "@type": "GeoShape",
           "additionalProperty": {
             "@type": "PropertyValue",
             "name": "GeoJSON",
             "value": {
               "type": "FeatureCollection",
               "features": [
                 {
                   "type": "Feature",
                   "properties": {},
                   "geometry": {
                     "type": "Polygon",
                     "coordinates": [
                       [
                         [
                           -122.05810546875,
                           40.730608477796636
                         ],
                         [
                           -122.82714843749999,
                           40.3130432088809
                         ],
                         [
                           -122.56347656249999,
                           39.90973623453719
                         ],
                         [
                           -122.62939453125001,
                           39.38526381099774
                         ],
                         [
                           -122.23388671874999,
                           38.496593518947556
                         ],
                         [
                           -121.70654296874999,
                           37.78808138412046
                         ],
                         [
                           -121.17919921875001,
                           37.43997405227057
                         ],
                         [
                           -121.00341796874999,
                           36.96744946416934
                         ],
                         [
                           -120.60791015625,
                           36.4566360115962
                         ],
                         [
                           -120.16845703125,
                           36.01356058518153
                         ],
                         [
                           -119.7509765625,
                           35.35321610123821
                         ],
                         [
                           -119.39941406249999,
                           34.95799531086792
                         ],
                         [
                           -118.93798828125,
                           34.97600151317591
                         ],
                         [
                           -118.63037109375,
                           35.15584570226544
                         ],
                         [
                           -118.63037109375,
                           35.764343479667176
                         ],
                         [
                           -118.89404296875,
                           36.24427318493909
                         ],
                         [
                           -119.39941406249999,
                           36.84446074079564
                         ],
                         [
                           -119.88281249999999,
                           37.23032838760387
                         ],
                         [
                           -120.41015624999999,
                           37.80544394934274
                         ],
                         [
                           -120.84960937499999,
                           38.34165619279595
                         ],
                         [
                           -121.28906250000001,
                           38.89103282648849
                         ],
                         [
                           -121.61865234375,
                           39.52099229357195
                         ],
                         [
                           -121.9921875,
                           39.9434364619742
                         ],
                         [
                           -122.05810546875,
                           40.730608477796636
                         ]
                       ]
                     ]
                   }
                 }
               ]
             }
           }
         },
         {
           "@type": "GeoCoordinates",
           "latitude": 37.54813616248181,
           "longitude": -120.72030970885758
         }
       ]
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "Crop": [
       0
     ],
     "biomass": [
       1,
       54,
       94,
       209,
       282,
       344
     ],
     "is": [
       2
     ],
     "increasingly": [
       3
     ],
     "being": [
       4
     ],
     "measured": [
       5
     ],
     "with": [
       6,
       83,
       161,
       174,
       351
     ],
     "surface": [
       7
     ],
     "reflectance": [
       8
     ],
     "data": [
       9,
       22,
       60,
       69,
       85
     ],
     "derived": [
       10,
       119
     ],
     "from": [
       11,
       70,
       86,
       120
     ],
     "multispectral": [
       12
     ],
     "broadband": [
       13
     ],
     "(MSBB)": [
       14
     ],
     "and": [
       15,
       27,
       79,
       113,
       125,
       133,
       140,
       147,
       165,
       183,
       200,
       246,
       286,
       295,
       304,
       312,
       314,
       332
     ],
     "hyperspectral": [
       16,
       330
     ],
     "narrowband": [
       17
     ],
     "(HNB)": [
       18
     ],
     "space-borne": [
       19
     ],
     "remotely": [
       20
     ],
     "sensed": [
       21
     ],
     "to": [
       23,
       51,
       63,
       337
     ],
     "increase": [
       24
     ],
     "the": [
       25,
       45,
       71,
       87,
       149,
       215,
       220,
       224,
       226,
       250,
       327,
       333,
       347
     ],
     "accuracy": [
       26
     ],
     "efficiency": [
       28
     ],
     "of": [
       29,
       38,
       47,
       67,
       96,
       180,
       204,
       223,
       249,
       326,
       335,
       355
     ],
     "crop": [
       30,
       53,
       93,
       145,
       208,
       281,
       343
     ],
     "yield": [
       31
     ],
     "models": [
       32
     ],
     "used": [
       33,
       58
     ],
     "in": [
       34,
       91
     ],
     "a": [
       35,
       65,
       143
     ],
     "wide": [
       36
     ],
     "array": [
       37
     ],
     "agricultural": [
       39
     ],
     "applications.": [
       40
     ],
     "However,": [
       41
     ],
     "few": [
       42
     ],
     "studies": [
       43
     ],
     "compare": [
       44
     ],
     "ability": [
       46,
       334
     ],
     "MSBBs": [
       48
     ],
     "versus": [
       49
     ],
     "HNBs": [
       50,
       205,
       340
     ],
     "capture": [
       52
     ],
     "variability.": [
       55
     ],
     "Therefore,": [
       56
     ],
     "we": [
       57
     ],
     "standard": [
       59
     ],
     "mining": [
       61
     ],
     "techniques": [
       62
     ],
     "identify": [
       64
     ],
     "set": [
       66
     ],
     "MSBB": [
       68,
       163,
       176,
       181
     ],
     "IKONOS,": [
       72,
       195
     ],
     "GeoEye-1,": [
       73,
       196
     ],
     "Landsat": [
       74,
       197
     ],
     "ETM+,": [
       75,
       198
     ],
     "MODIS,": [
       76,
       199
     ],
     "WorldView-2": [
       77
     ],
     "sensors": [
       78,
       193
     ],
     "compared": [
       80,
       160,
       173
     ],
     "their": [
       81
     ],
     "performance": [
       82,
       179
     ],
     "HNB": [
       84,
       153,
       166,
       277
     ],
     "EO-1": [
       88,
       328
     ],
     "Hyperion": [
       89,
       329
     ],
     "sensor": [
       90,
       331
     ],
     "explaining": [
       92
     ],
     "variability": [
       95,
       158,
       171
     ],
     "four": [
       97
     ],
     "important": [
       98
     ],
     "field": [
       99
     ],
     "crops": [
       100
     ],
     "(rice,": [
       101
     ],
     "alfalfa,": [
       102
     ],
     "cotton,": [
       103
     ],
     "maize).": [
       104
     ],
     "The": [
       105,
       178,
       275,
       322
     ],
     "analysis": [
       106
     ],
     "employed": [
       107
     ],
     "two-band": [
       108
     ],
     "(ratio)": [
       109
     ],
     "vegetation": [
       110,
       116,
       278
     ],
     "indices": [
       111,
       117,
       279
     ],
     "(TBVIs)": [
       112
     ],
     "multiband": [
       114
     ],
     "(additive)": [
       115
     ],
     "(MBVIs)": [
       118
     ],
     "Singular": [
       121
     ],
     "Value": [
       122
     ],
     "Decomposition": [
       123
     ],
     "(SVD)": [
       124
     ],
     "stepwise": [
       126
     ],
     "regression.": [
       127
     ],
     "Results": [
       128
     ],
     "demonstrated": [
       129
     ],
     "that": [
       130,
       206,
       349
     ],
     "HNB-derived": [
       131
     ],
     "TBVIs": [
       132,
       139,
       154,
       184
     ],
     "MBVIs": [
       134,
       141,
       167,
       182
     ],
     "performed": [
       135
     ],
     "better": [
       136
     ],
     "than": [
       137
     ],
     "MSBB-derived": [
       138
     ],
     "on": [
       142,
       214,
       219
     ],
     "per": [
       144
     ],
     "basis": [
       146
     ],
     "for": [
       148,
       280,
       289,
       298,
       307,
       317,
       341
     ],
     "pooled": [
       150
     ],
     "data:": [
       151
     ],
     "overall,": [
       152
     ],
     "explained": [
       155,
       168
     ],
     "5\u201331%": [
       156
     ],
     "greater": [
       157,
       170
     ],
     "when": [
       159,
       172
     ],
     "various": [
       162,
       175
     ],
     "TBVIs;": [
       164
     ],
     "3\u201333%": [
       169
     ],
     "MBVIs.": [
       177
     ],
     "improved": [
       185,
       342
     ],
     "mildly,": [
       186
     ],
     "by": [
       187
     ],
     "combining": [
       188
     ],
     "spectral": [
       189,
       228,
       252,
       324
     ],
     "information": [
       190
     ],
     "across": [
       191
     ],
     "multiple": [
       192
     ],
     "involving": [
       194
     ],
     "WorldView-2.": [
       201
     ],
     "A": [
       202
     ],
     "number": [
       203
     ],
     "advance": [
       207
     ],
     "modeling": [
       210
     ],
     "were": [
       211,
       272
     ],
     "determined.": [
       212
     ],
     "Based": [
       213
     ],
     "highest": [
       216
     ],
     "factor": [
       217
     ],
     "loadings": [
       218
     ],
     "first": [
       221
     ],
     "component": [
       222
     ],
     "SVD,": [
       225
     ],
     "\"red-edge\"": [
       227
     ],
     "range": [
       229,
       253
     ],
     "(700\u2013740": [
       230
     ],
     "nm)": [
       231,
       239,
       255,
       271
     ],
     "centered": [
       232,
       256
     ],
     "at": [
       233,
       257
     ],
     "722": [
       234,
       303
     ],
     "nm": [
       235,
       267,
       288,
       297,
       306,
       316
     ],
     "(bandwidth": [
       236,
       268
     ],
     "=": [
       237,
       269,
       292,
       301,
       310,
       320
     ],
     "10": [
       238,
       270
     ],
     "stood": [
       240
     ],
     "out": [
       241
     ],
     "prominently,": [
       242
     ],
     "while": [
       243
     ],
     "five": [
       244
     ],
     "additional": [
       245
     ],
     "distinct": [
       247,
       339
     ],
     "portions": [
       248
     ],
     "recorded": [
       251
     ],
     "(400\u20132500": [
       254
     ],
     "539": [
       258
     ],
     "nm,": [
       259,
       261,
       263,
       265
     ],
     "758": [
       260
     ],
     "914": [
       262
     ],
     "1130": [
       264
     ],
     "1320": [
       266
     ],
     "also": [
       273
     ],
     "important.": [
       274
     ],
     "best": [
       276
     ],
     "estimation": [
       283,
       345
     ],
     "involved": [
       284
     ],
     "549": [
       285
     ],
     "752": [
       287
     ],
     "rice": [
       290
     ],
     "(R2": [
       291,
       300,
       309,
       319
     ],
     "0.91);": [
       293
     ],
     "925": [
       294
     ],
     "1104": [
       296
     ],
     "alfalfa": [
       299
     ],
     "0.81);": [
       302
     ],
     "732": [
       305
     ],
     "cotton": [
       308
     ],
     "0.97);": [
       311
     ],
     "529": [
       313
     ],
     "895": [
       315
     ],
     "maize": [
       318
     ],
     "0.94).": [
       321
     ],
     "higher": [
       323,
       352
     ],
     "resolution": [
       325,
       354
     ],
     "users": [
       336
     ],
     "choose": [
       338
     ],
     "outweigh": [
       346
     ],
     "benefits": [
       348
     ],
     "come": [
       350
     ],
     "spatial": [
       353
     ],
     "MSBBs.": [
       356
     ]
   },
   "apc_list": {
     "value": 3310,
     "currency": "USD",
     "value_usd": 3310,
     "provenance": "doaj"
   },
   "apc_paid": {
     "value": 3310,
     "currency": "USD",
     "value_usd": 3310,
     "provenance": "doaj"
   },
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5103061969",
         "display_name": "Michael Marshall",
         "orcid": "https://orcid.org/0000-0002-9738-5036"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I55021457",
           "display_name": "World Agroforestry Centre",
           "ror": "https://ror.org/01kmz4383",
           "country_code": "KE",
           "type": "nonprofit",
           "lineage": [
             "https://openalex.org/I55021457"
           ]
         }
       ],
       "countries": [
         "KE"
       ],
       "is_corresponding": false,
       "raw_author_name": "Michael T. Marshall",
       "raw_affiliation_strings": [
         "Climate Research Unit, World Agroforestry Centre, United Nations Ave, Gigiri, P.O. Box 30677-00100, Nairobi, Kenya"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Climate Research Unit, World Agroforestry Centre, United Nations Ave, Gigiri, P.O. Box 30677-00100, Nairobi, Kenya",
           "institution_ids": [
             "https://openalex.org/I55021457"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5039070473",
         "display_name": "Prasad S. Thenkabail",
         "orcid": "https://orcid.org/0000-0002-2182-8822"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I4210111045",
           "display_name": "Astrogeology Science Center",
           "ror": "https://ror.org/02623eb90",
           "country_code": "US",
           "type": "facility",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249",
             "https://openalex.org/I4210111045"
           ]
         },
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Prasad S. Thenkabail",
       "raw_affiliation_strings": [
         "Southwestern Geographic Center, Geological Survey, 2255 N. Gemini Dr, Flagstaff, AZ, USA"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "Southwestern Geographic Center, Geological Survey, 2255 N. Gemini Dr, Flagstaff, AZ, USA",
           "institution_ids": [
             "https://openalex.org/I4210111045",
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S173339282",
       "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing",
       "issn_l": "0924-2716",
       "issn": [
         "0924-2716",
         "1872-8235"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320990",
       "host_organization_name": "Elsevier BV",
       "host_organization_lineage": [
         "https://openalex.org/P4310320990"
       ],
       "host_organization_lineage_names": [
         "Elsevier BV"
       ],
       "type": "journal"
     },
     "license": "cc-by-nc-nd",
     "license_id": "https://openalex.org/licenses/cc-by-nc-nd",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "biblio": {
     "volume": "108",
     "issue": null,
     "first_page": "205",
     "last_page": "218"
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1277711400",
   "cited_by_count": 117,
   "cited_by_percentile_year": {
     "min": 98,
     "max": 99
   },
   "concepts": [
     {
       "id": "https://openalex.org/c173163844",
       "wikidata": "https://www.wikidata.org/wiki/Q1761440",
       "display_name": "Multispectral image",
       "level": 2,
       "score": 0.7887655,
       "qid": null
     },
     {
       "id": "https://openalex.org/c62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 0.7603995,
       "qid": "Q158877"
     },
     {
       "id": "https://openalex.org/c159078339",
       "wikidata": "https://www.wikidata.org/wiki/Q959005",
       "display_name": "Hyperspectral imaging",
       "level": 2,
       "score": 0.7411494,
       "qid": "Q158833"
     },
     {
       "id": "https://openalex.org/c39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 0.6252383,
       "qid": "Q166085"
     },
     {
       "id": "https://openalex.org/c104541649",
       "wikidata": "https://www.wikidata.org/wiki/Q6935090",
       "display_name": "Multispectral pattern recognition",
       "level": 3,
       "score": 0.58311176,
       "qid": null
     },
     {
       "id": "https://openalex.org/c2776133958",
       "wikidata": "https://www.wikidata.org/wiki/Q7918366",
       "display_name": "Vegetation (pathology)",
       "level": 2,
       "score": 0.5715275,
       "qid": null
     },
     {
       "id": "https://openalex.org/c115540264",
       "wikidata": "https://www.wikidata.org/wiki/Q2945560",
       "display_name": "Biomass (ecology)",
       "level": 2,
       "score": 0.5059671,
       "qid": null
     },
     {
       "id": "https://openalex.org/c27438332",
       "wikidata": "https://www.wikidata.org/wiki/Q2873",
       "display_name": "Principal component analysis",
       "level": 2,
       "score": 0.44543839,
       "qid": null
     },
     {
       "id": "https://openalex.org/c137580998",
       "wikidata": "https://www.wikidata.org/wiki/Q235352",
       "display_name": "Crop",
       "level": 2,
       "score": 0.42644078,
       "qid": null
     },
     {
       "id": "https://openalex.org/c2777205146",
       "wikidata": "https://www.wikidata.org/wiki/Q6935091",
       "display_name": "Multispectral Scanner",
       "level": 2,
       "score": 0.42082947,
       "qid": null
     },
     {
       "id": "https://openalex.org/c41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 0.21411783,
       "qid": "Q158969"
     },
     {
       "id": "https://openalex.org/c6557445",
       "wikidata": "https://www.wikidata.org/wiki/Q173113",
       "display_name": "Agronomy",
       "level": 1,
       "score": 0.20793003,
       "qid": "Q166146"
     },
     {
       "id": "https://openalex.org/c127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.14703459,
       "qid": "Q158984"
     },
     {
       "id": "https://openalex.org/c154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 0.106661856,
       "qid": "Q166116"
     },
     {
       "id": "https://openalex.org/c86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 0.10485113,
       "qid": "Q158998"
     },
     {
       "id": "https://openalex.org/c71924100",
       "wikidata": "https://www.wikidata.org/wiki/Q11190",
       "display_name": "Medicine",
       "level": 0,
       "score": 0.07193178,
       "qid": "Q166104"
     },
     {
       "id": "https://openalex.org/c142724271",
       "wikidata": "https://www.wikidata.org/wiki/Q7208",
       "display_name": "Pathology",
       "level": 1,
       "score": 0.0,
       "qid": "Q166260"
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 2,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 8
     },
     {
       "year": 2023,
       "cited_by_count": 21
     },
     {
       "year": 2022,
       "cited_by_count": 12
     },
     {
       "year": 2021,
       "cited_by_count": 15
     },
     {
       "year": 2020,
       "cited_by_count": 15
     },
     {
       "year": 2019,
       "cited_by_count": 11
     },
     {
       "year": 2018,
       "cited_by_count": 12
     },
     {
       "year": 2017,
       "cited_by_count": 12
     },
     {
       "year": 2016,
       "cited_by_count": 11
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation",
   "doi": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
   "fulltext_origin": "ngrams",
   "fwci": 7.89,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W1277711400",
   "ids": {
     "openalex": "https://openalex.org/W1277711400",
     "doi": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
     "mag": "1277711400"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 3,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/vegetation-monitoring",
       "display_name": "Vegetation Monitoring",
       "score": 0.548802
     },
     {
       "id": "https://openalex.org/keywords/biomass-estimation",
       "display_name": "Biomass Estimation",
       "score": 0.508557
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": true,
       "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S173339282",
         "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing",
         "issn_l": "0924-2716",
         "issn": [
           "0924-2716",
           "1872-8235"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320990",
         "host_organization_name": "Elsevier BV",
         "host_organization_lineage": [
           "https://openalex.org/P4310320990"
         ],
         "host_organization_lineage_names": [
           "Elsevier BV"
         ],
         "type": "journal"
       },
       "license": "cc-by-nc-nd",
       "license_id": "https://openalex.org/licenses/cc-by-nc-nd",
       "version": "publishedVersion",
       "is_accepted": true,
       "is_published": true
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W1277711400/ngrams",
   "open_access": {
     "is_oa": true,
     "oa_status": "hybrid",
     "oa_url": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1016/j.isprsjprs.2015.08.001",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S173339282",
       "display_name": "ISPRS Journal of Photogrammetry and Remote Sensing",
       "issn_l": "0924-2716",
       "issn": [
         "0924-2716",
         "1872-8235"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320990",
       "host_organization_name": "Elsevier BV",
       "host_organization_lineage": [
         "https://openalex.org/P4310320990"
       ],
       "host_organization_lineage_names": [
         "Elsevier BV"
       ],
       "type": "journal"
     },
     "license": "cc-by-nc-nd",
     "license_id": "https://openalex.org/licenses/cc-by-nc-nd",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "primary_topic": {
     "id": "https://openalex.org/T10111",
     "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
     "score": 0.9999,
     "subfield": {
       "id": "https://openalex.org/subfields/2303",
       "display_name": "Ecology"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2015-10-01",
   "publication_year": 2015,
   "referenced_works": [
     "https://openalex.org/W1499170180",
     "https://openalex.org/W182858355",
     "https://openalex.org/W1967722715",
     "https://openalex.org/W1973792179",
     "https://openalex.org/W1977066218",
     "https://openalex.org/W1979144473",
     "https://openalex.org/W1991668437",
     "https://openalex.org/W1991715710",
     "https://openalex.org/W2001157145",
     "https://openalex.org/W2006920087",
     "https://openalex.org/W2018027183",
     "https://openalex.org/W2019323988",
     "https://openalex.org/W2020708554",
     "https://openalex.org/W2020807961",
     "https://openalex.org/W2026958124",
     "https://openalex.org/W2037798659",
     "https://openalex.org/W2038927660",
     "https://openalex.org/W2055842947",
     "https://openalex.org/W2063623478",
     "https://openalex.org/W2075021380",
     "https://openalex.org/W2089464686",
     "https://openalex.org/W2095823889",
     "https://openalex.org/W2096599785",
     "https://openalex.org/W2112118957",
     "https://openalex.org/W2112732795",
     "https://openalex.org/W2113249705",
     "https://openalex.org/W2113410727",
     "https://openalex.org/W2121025745",
     "https://openalex.org/W2125230412",
     "https://openalex.org/W2139925058",
     "https://openalex.org/W2150853404",
     "https://openalex.org/W2151089182",
     "https://openalex.org/W2167556755",
     "https://openalex.org/W2171251976",
     "https://openalex.org/W2179386986",
     "https://openalex.org/W2521943833",
     "https://openalex.org/W3104887532",
     "https://openalex.org/W4255795797",
     "https://openalex.org/W4300952079"
   ],
   "referenced_works_count": 39,
   "related_works": [
     "https://openalex.org/W2988577871",
     "https://openalex.org/W2578373974",
     "https://openalex.org/W2128126485",
     "https://openalex.org/W2035433763",
     "https://openalex.org/W2033394108",
     "https://openalex.org/W2022304901",
     "https://openalex.org/W2018850895",
     "https://openalex.org/W2001338653",
     "https://openalex.org/W1987483041",
     "https://openalex.org/W172072032"
   ],
   "sustainable_development_goals": [
     {
       "score": 0.67,
       "id": "https://metadata.un.org/sdg/2",
       "display_name": "Zero hunger"
     }
   ],
   "title": "Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation",
   "topics": [
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "score": 0.9999,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "score": 0.9967,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "score": 0.9937,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-02T01:05:14.587640",
   "versions": [],
   "qid": null
 }

}