Item talk:Q227808

From geokb

{

 "@context": "http://schema.org/",
 "@type": "WebPage",
 "additionalType": "Project",
 "url": "https://www.usgs.gov/centers/gggsc/science/critical-elements-carbonatites-exploration-targets-element-distribution",
 "headline": "Critical Elements in Carbonatites: From Exploration Targets to Element Distribution",
 "datePublished": "June 19, 2020",
 "author": [
   {
     "@type": "Person",
     "name": "Philip L Verplanck",
     "url": "https://www.usgs.gov/staff-profiles/philip-l-verplanck",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "orcid",
       "value": "0000-0002-3653-6419"
     }
   },
   {
     "@type": "Person",
     "name": "Heather A Lowers",
     "url": "https://www.usgs.gov/staff-profiles/heather-a-lowers",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "orcid",
       "value": "0000-0001-5360-9264"
     }
   },
   {
     "@type": "Person",
     "name": "Allen Andersen, PhD",
     "url": "https://www.usgs.gov/staff-profiles/allen-andersen",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "orcid",
       "value": "0000-0002-6865-2561"
     }
   },
   {
     "@type": "Person",
     "name": "Craig A Johnson, Ph.D.",
     "url": "https://www.usgs.gov/staff-profiles/craig-a-johnson",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "orcid",
       "value": "0000-0002-1334-2996"
     }
   },
   {
     "@type": "Person",
     "name": "Danielle A Olinger",
     "url": "https://www.usgs.gov/staff-profiles/danielle-a-olinger",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "orcid",
       "value": "0000-0001-8375-5852"
     }
   }
 ],
 "description": [
   {
     "@type": "TextObject",
     "text": "Critical elements are essential to the modern economy and have potential supply chain disruptions, but compared to most base and precious metals, little work has been done in understanding ore-grade enrichments. Carbonatites are the primary source of the worlds light rare earth elements and niobium, and a potential source for heavy rare earths, scandium, tantalum, and thorium. Project objectives are 1) to evaluate at a global scale the controls that determine whether a carbonatite is enriched in critical elements or not, 2) to determine which mineral(s) host the critical elements in an ore zone and controls on their distribution, and 3) to determine the fluid composition responsible for rare earth element transport and enrichment."
   },
   {
     "@type": "TextObject",
     "text": "Return to Mineral Resources Program | Geology, Geophysics, and Geochemistry Science Center"
   },
   {
     "@type": "TextObject",
     "text": "Methods to Address Issue"
   },
   {
     "@type": "TextObject",
     "text": "Our project's objectives are to determine the processes responsible for critical-element enrichments in carbonatites. Elements of interest include neodymium (Nd), dysprosium (Dy), terbium (Tb), yttrium (Y), niobium (Nb), scandium (Sc), and tantalum (Ta), with other elements included as needed. Three specific objectives are 1) to evaluate at a global scale why some carbonatites are enriched in an element of interest and others are not, 2) to determine where (and why) an element of interest resides in enriched zones, and 3) to determine the composition of the fluids responsible for hydrothermal transport and deposition.  This information is key to constraining enrichment processes and extraction requirements. Methods to achieve this include: integrated chemical petrographic, scanning electron microscopy, cathodoluminescence spectroscopy, mineral chemistry, isotopic characterization, fluid inclusion microthermometry, and laser Raman spectroscopy."
   },
   {
     "@type": "TextObject",
     "text": "Science Issue and Relevance"
   },
   {
     "@type": "TextObject",
     "text": "Critical elements are essential to the economy and have potential supply chain disruptions but compared to most base (common and inexpensive) and precious metals, little work has been undertaken to 1) determine favorable environments for exploration, 2) identify where these elements reside when enriched. Critical element enrichment in carbonatites is extremely complex and poorly understood, and 3) characterize the chemistry of fluids that transport and concentrate REEs in high-grade and high-tonnage carbonatite complexes."
   }
 ],
 "funder": {
   "@type": "Organization",
   "name": "Geology, Geophysics, and Geochemistry Science Center",
   "url": "https://www.usgs.gov/centers/gggsc"
 },
 "about": [
   {
     "@type": "Thing",
     "name": "Water"
   },
   {
     "@type": "Thing",
     "name": "Isotope Geochemistry"
   },
   {
     "@type": "Thing",
     "name": "scandium"
   },
   {
     "@type": "Thing",
     "name": "niobium"
   },
   {
     "@type": "Thing",
     "name": "critical elements"
   },
   {
     "@type": "Thing",
     "name": "Environmental Health"
   },
   {
     "@type": "Thing",
     "name": "ore genesis"
   },
   {
     "@type": "Thing",
     "name": "Economic Geology"
   },
   {
     "@type": "Thing",
     "name": "Geology"
   },
   {
     "@type": "Thing",
     "name": "Trace Elements"
   },
   {
     "@type": "Thing",
     "name": "Geochemistry"
   },
   {
     "@type": "Thing",
     "name": "Deposit Characterization and Identification"
   },
   {
     "@type": "Thing",
     "name": "Information Systems"
   },
   {
     "@type": "Thing",
     "name": "light rare earth elements (LREE)"
   },
   {
     "@type": "Thing",
     "name": "ore deposit"
   },
   {
     "@type": "Thing",
     "name": "dysporium"
   },
   {
     "@type": "Thing",
     "name": "Aqueous Geochemistry"
   },
   {
     "@type": "Thing",
     "name": "Undiscovered Resources"
   },
   {
     "@type": "Thing",
     "name": "Energy"
   },
   {
     "@type": "Thing",
     "name": "Research Geochemistry"
   },
   {
     "@type": "Thing",
     "name": "Mineral Resources Program (MRP)"
   },
   {
     "@type": "Thing",
     "name": "Analytical Chemistry"
   },
   {
     "@type": "Thing",
     "name": "resource potential"
   },
   {
     "@type": "Thing",
     "name": "heavy rare earth elements (HREE)"
   },
   {
     "@type": "Thing",
     "name": "carbonatite"
   },
   {
     "@type": "Thing",
     "name": "Inclusions"
   },
   {
     "@type": "Thing",
     "name": "Critical Resources"
   },
   {
     "@type": "Thing",
     "name": "Method Development"
   },
   {
     "@type": "Thing",
     "name": "Mineral Resource Formation"
   },
   {
     "@type": "Thing",
     "name": "Science Technology"
   },
   {
     "@type": "Thing",
     "name": "Microanalysis"
   },
   {
     "@type": "Thing",
     "name": "Critical Mineral Resources"
   },
   {
     "@type": "Thing",
     "name": "Minerals"
   },
   {
     "@type": "Thing",
     "name": "Ore Deposit Genesis"
   },
   {
     "@type": "Thing",
     "name": "tantalum"
   },
   {
     "@type": "Thing",
     "name": "Mass spectrometry"
   },
   {
     "@type": "Thing",
     "name": "Mineralogy"
   },
   {
     "@type": "Thing",
     "name": "Rare Earth Elements (REE)"
   },
   {
     "@type": "Thing",
     "name": "Critical Minerals"
   },
   {
     "@type": "Thing",
     "name": "Exploration Geochemistry"
   },
   {
     "@type": "Thing",
     "name": "Mineral Resources"
   },
   {
     "@type": "Thing",
     "name": "Methods and Analysis"
   },
   {
     "@type": "Thing",
     "name": "Metal Chemistry"
   }
 ]

}