Item talk:Q152799
Use of lidar point cloud data to support estimation of residual trace metals stored in mine chat piles in the Old Lead Belt of southeastern, Missouri
Historic lead and zinc (Pb-Zn) mining in southeast Missouri’s ―Old Lead Belt‖ has left large chat piles dominating the landscape where prior to 1972 mining was the major industry of the region. As a result of variable beneficiation methods over the history of mining activity, these piles remain with large quantities of unrecovered Pb and Zn and to a lesser extent cadmium (Cd). Quantifying the residual content of trace metals in chat piles is problematic because of the extensive field effort that must go into collecting elevation points for volumetric analysis. This investigation demonstrates that publicly available lidar point data from the U.S. Geological Survey 3D Elevation Program (3DEP) can be used to effectively calculate chat pile volumes as a method of more accurately estimating the total residual trace metal content in these mining wastes. Five chat piles located in St. Francois County, Missouri, were quantified for residual trace metal content. Utilizing lidar point cloud data collected in 2011 and existing trace metal concentration data obtained during remedial investigations, residual content of these chat piles ranged from 9247 to 88,579 metric tons Pb, 1925 to 52,306 metric tons Zn, and 51 to 1107 metric tons Cd. Development of new beneficiation methods for recovering these constituents from chat piles would need to achieve current Federal soil screening standards. To achieve this for the five chat piles investigated, 42 to 72% of residual Pb would require mitigation to the 1200 mg/kg Federal non-playground standard, 88 to 98% of residual Zn would require mitigation to the Ecological Soil Screening level (ESSL) for plant life, and 70% to 98% of Cd would require mitigation to achieve the ESSL. Achieving these goals through an existing or future beneficiation method(s) would remediate chat to a trace metal concentration level that would support its use as a safe agricultural soil amendment.