Item talk:Q150118
Effects of structure and volcanic stratigraphy on groundwater and surface water flow: Hat Creek basin, California, USA
Hydrogeologic systems in the southern Cascade Range in California (USA) develop in volcanic rocks where morphology, stratigraphy, extensional structures, and attendant basin geometry play a central role in groundwater flow paths, groundwater/surface-water interactions, and spring discharge locations. High-volume springs (greater than 3 m3/s) flow from basin-filling (<800 ka) volcanic rocks in the Hat Creek and Fall River tributaries and contribute approximately half of the average annual flow of the Pit River, the largest tributary to Shasta Lake. A hydrogeologic conceptual framework is constructed for the Hat Creek basin combining new geologic mapping, water-well lithologic logs, a database of active faults, LiDAR mapping of faults and volcanic landforms, streamflow measurements and airborne thermal infrared remote sensing of stream temperature. These data are used to integrate the geologic structure and the volcanic and volcaniclastic stratigraphy to create a three-dimensional interpretation of the hydrogeology in the basin. Two large streamflow gains from focused groundwater discharge near Big Spring and north of Sugarloaf Peak result from geologic barriers that restrict lateral groundwater flow and force water into Hat Creek. The inferred groundwater-flow barriers divide the aquifer system into at least three leaky compartments. The two downstream compartments lose streamflow in the upstream reaches (immediately downstream of the groundwater-flow barriers) and gain in downstream reaches with the greatest inflows immediately upstream of the barriers.