Item talk:Q142838
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5082021995", "orcid": "https://orcid.org/0000-0002-8065-6004", "display_name": "Fabrizio Fenicia", "display_name_alternatives": [ "Fenicia Fabrizio", "F. Fenicia", "Fabrizio Fenicia" ], "works_count": 246, "cited_by_count": 5988, "summary_stats": { "2yr_mean_citedness": 3.096774193548387, "h_index": 33, "i10_index": 63 }, "ids": { "openalex": "https://openalex.org/A5082021995", "orcid": "https://orcid.org/0000-0002-8065-6004", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=8636378000&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I63664421", "ror": "https://ror.org/00pc48d59", "display_name": "Swiss Federal Institute of Aquatic Science and Technology", "country_code": "CH", "type": "facility", "lineage": [ "https://openalex.org/I2799323385", "https://openalex.org/I63664421" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I98358874", "ror": "https://ror.org/02e2c7k09", "display_name": "Delft University of Technology", "country_code": "NL", "type": "education", "lineage": [ "https://openalex.org/I98358874" ] }, "years": [ 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006 ] }, { "institution": { "id": "https://openalex.org/I4210165652", "ror": "https://ror.org/05e0vkr08", "display_name": "National Library of Luxembourg", "country_code": "LU", "type": "government", "lineage": [ "https://openalex.org/I4210165652" ] }, "years": [ 2013, 2008, 2007, 2006 ] }, { "institution": { "id": "https://openalex.org/I2799973717", "ror": "https://ror.org/030deh410", "display_name": "IHE Delft Institute for Water Education", "country_code": "NL", "type": "education", "lineage": [ "https://openalex.org/I2799973717" ] }, "years": [ 2013 ] }, { "institution": { "id": "https://openalex.org/I2801560652", "ror": "https://ror.org/02578qw11", "display_name": "Consumers, Health, Agriculture and Food Executive Agency", "country_code": "LU", "type": "government", "lineage": [ "https://openalex.org/I1320481043", "https://openalex.org/I2800387288", "https://openalex.org/I2801560652" ] }, "years": [ 2012 ] }, { "institution": { "id": "https://openalex.org/I4210095188", "ror": "https://ror.org/00mn2bk17", "display_name": "Environmental and Water Resources Engineering", "country_code": "IL", "type": "other", "lineage": [ "https://openalex.org/I4210095188" ] }, "years": [ 2011 ] }, { "institution": { "id": "https://openalex.org/I45935490", "ror": "https://ror.org/04hxcaz34", "display_name": "National Institute of Water and Atmospheric Research", "country_code": "NZ", "type": "facility", "lineage": [ "https://openalex.org/I2799419803", "https://openalex.org/I45935490" ] }, "years": [ 2010 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I63664421", "ror": "https://ror.org/00pc48d59", "display_name": "Swiss Federal Institute of Aquatic Science and Technology", "country_code": "CH", "type": "facility", "lineage": [ "https://openalex.org/I2799323385", "https://openalex.org/I63664421" ] } ], "topics": [ { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 179, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 75, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "count": 58, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 29, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "count": 21, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "count": 17, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 17, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "count": 13, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11180", "display_name": "Pesticide Pollution and Management", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11423", "display_name": "Analysis of Pesticide Residues in Food", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10419", "display_name": "Antibiotic Resistance in Aquatic Environments and Wastewater", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14427", "display_name": "Hydrologic Data Management and Analysis", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11405", "display_name": "Global Sea Level Variability and Change", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12773", "display_name": "Water Quality and Hydrogeology Research", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "value": 0.0008459, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 0.0005554, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 0.0003821, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 0.0002852, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "value": 0.0001413, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14427", "display_name": "Hydrologic Data Management and Analysis", "value": 0.0001331, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 0.0001268, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "value": 9.16e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "value": 8.77e-05, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11180", "display_name": "Pesticide Pollution and Management", "value": 8.58e-05, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "value": 8.36e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 6.67e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "value": 4.92e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11423", "display_name": "Analysis of Pesticide Residues in Food", "value": 4.91e-05, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10419", "display_name": "Antibiotic Resistance in Aquatic Environments and Wastewater", "value": 4.51e-05, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 3.49e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13121", "display_name": "Radar Wave Propagation and Refractivity Estimation", "value": 3.2e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12870", "display_name": "Restoration Techniques for Forest Ecosystems", "value": "3e-05", "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 2.93e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "value": 2.89e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12773", "display_name": "Water Quality and Hydrogeology Research", "value": 2.84e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12026", "display_name": "Explainable Artificial Intelligence", "value": 2.83e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "value": 2.73e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13785", "display_name": "Coastal Hydrophysical Processes in Shallow Water Basins", "value": 2.58e-05, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14160", "display_name": "Evolution of Water Technologies in Ancient Civilizations", "value": 2.56e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 71.1 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 69.5 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 65.0 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 62.2 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 58.5 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 53.3 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 52.8 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 51.2 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 47.2 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 45.9 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 43.5 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 43.5 }, { "id": "https://openalex.org/C126645576", "wikidata": "https://www.wikidata.org/wiki/Q166620", "display_name": "Drainage basin", "level": 2, "score": 38.6 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 35.8 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 34.6 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 33.3 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 27.2 }, { "id": "https://openalex.org/C50477045", "wikidata": "https://www.wikidata.org/wiki/Q1444790", "display_name": "Surface runoff", "level": 2, "score": 26.0 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 23.6 } ], "counts_by_year": [ { "year": 2024, "works_count": 16, "cited_by_count": 770 }, { "year": 2023, "works_count": 29, "cited_by_count": 969 }, { "year": 2022, "works_count": 16, "cited_by_count": 992 }, { "year": 2021, "works_count": 15, "cited_by_count": 1045 }, { "year": 2020, "works_count": 17, "cited_by_count": 893 }, { "year": 2019, "works_count": 6, "cited_by_count": 814 }, { "year": 2018, "works_count": 10, "cited_by_count": 648 }, { "year": 2017, "works_count": 10, "cited_by_count": 678 }, { "year": 2016, "works_count": 15, "cited_by_count": 703 }, { "year": 2015, "works_count": 11, "cited_by_count": 700 }, { "year": 2014, "works_count": 12, "cited_by_count": 594 }, { "year": 2013, "works_count": 20, "cited_by_count": 446 }, { "year": 2012, "works_count": 16, "cited_by_count": 253 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5082021995", "updated_date": "2024-08-25T02:52:34.277661", "created_date": "2023-07-21", "_id": "https://openalex.org/A5082021995" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-8065-6004", "mainEntityOfPage": "https://orcid.org/0000-0002-8065-6004", "givenName": "Fabrizio", "familyName": "Fenicia", "affiliation": { "@type": "Organization", "@id": "grid.418656.8", "name": "Eawag, Swiss Federal Institute of Aquatic Science and Technology" }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-28-2505-2024", "name": "Metamorphic testing of machine learning and conceptual hydrologic models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-28-2505-2024" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-4385", "name": "Can we identify dominant hydrological mechanisms in ungauged catchments?", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-4385" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-6641", "name": "EStreams: Building an integrated dataset of streamflow, hydro-climatic variables and landscape attributes for catchments in Europe", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-6641" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-9190", "name": "Learning Catchment Features with Autoencoders", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-9190" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-2024-47", "name": "Learning Landscape Features from Streamflow with Autoencoders", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2024-47" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-2023-168", "name": "Metamorphic Testing of Machine Learning and Conceptual Hydrologic Models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2023-168" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-2023-168-supplement", "name": "Supplementary material to \"Metamorphic Testing of Machine Learning and Conceptual Hydrologic Models\"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2023-168-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr031929", "name": "Exploring Signature\u2010Based Model Calibration for Streamflow Prediction in Ungauged Basins", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr031929" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-4693", "name": "Cryospheric-hydrologic modeling and prediction of a mountainous catchment in the northeast Tibet Plateau", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-4693" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-15968", "name": "Differentiable modeling to unify machine learning and physical models and advance Geosciences", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-15968" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-11988", "name": "Identifying hydrological regularities via perceptual models at the regional scale", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-11988" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-6466", "name": "Neural ODE Models in Large-Sample Hydrology", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-6466" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-3933", "name": "Towards identification of dominant hydrological mechanisms in ungauged catchments", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-3933" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-gc8-hydro-3", "name": "Building reliable hydrological models for climate change studies", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-gc8-hydro-3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-26-5085-2022", "name": "Improving hydrologic models for predictions and process understanding using neural ODEs", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-26-5085-2022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-2022-56", "name": "Improving hydrologic models for predictions and process understanding using Neural ODEs", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-2022-56" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr030705", "name": "An Exploration of Bayesian Identification of Dominant Hydrological Mechanisms in Ungauged Catchments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr030705" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127241203" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr030619", "name": "Correspondence Between Model Structures and Hydrological Signatures: A Large\u2010Sample Case Study Using 508 Brazilian Catchments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr030619" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127260468" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2022.128057", "name": "Application of stochastic time dependent parameters to improve the characterization of uncertainty in conceptual hydrological models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2022.128057" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85132711059" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2021.127287", "name": "Modeling streamflow variability at the regional scale: (1) perceptual model development through signature analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85122210775" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2021.127287" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2021.127286", "name": "Modeling streamflow variability at the regional scale: (2) Development of a bespoke distributed conceptual model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85122196729" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2021.127286" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-14-7047-2021", "name": "SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85119989232" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-14-7047-2021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.14266", "name": "Behind every robust result is a robust method: Perspectives from a case study and publication process in hydrological modelling", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85113434363" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.14266" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr028311", "name": "Quantifying the Uncertainty of a Conceptual Herbicide Transport Model With Time\u2010Dependent, Stochastic Parameters", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr028311" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85113309591" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr027948", "name": "Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108811945" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr027948" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr028400", "name": "Potential and Challenges of Investigating Intrinsic Uncertainty of Hydrological Models With Stochastic, Time\u2010Dependent Parameters", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103260959" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr028400" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10505161.1", "name": "SuperflexPy: a new open source framework for building conceptual hydrological models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10505161.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-25-1069-2021", "name": "Behind the scenes of streamflow model performance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-25-1069-2021" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102050884" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.14112", "name": "The Maimai M8 experimental catchment database: Forty years of process-based research on steep, wet hillslopes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85106890903" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.14112" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.watres.2021.117050", "name": "Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.watres.2021.117050" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103430495" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10501581.1", "name": "Data analysis and model building for understanding catchment processes: the case study of the Thur catchment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10501581.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.wroa.2020.100064", "name": "A review of long-term pesticide monitoring studies to assess surface water quality trends", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090896281" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.wroa.2020.100064" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-24-4793-2020", "name": "Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: The Murray\u2013Darling basin in Australia as a test case", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85092762326" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-24-4793-2020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2020.124812", "name": "Characterizing fast herbicide transport in a small agricultural catchment with conceptual models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2020.124812" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082601064" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-24-1319-2020", "name": "Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: The case study of the Thur catchment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082523949" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-24-1319-2020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-23-2147-2019", "name": "A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-23-2147-2019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85065096262" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017wr021616", "name": "Signature\u2010Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr021616" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050826313" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2017.12.011", "name": "Hillslope response to sprinkling and natural rainfall using velocity and celerity estimates in a slate-bedrock catchment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041411223" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2017.12.011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-22-4229-2018", "name": "Modelling biocide and herbicide concentrations in catchments of the Rhine basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051435569" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-22-4229-2018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017wr020528", "name": "Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Theory and Comparison to Existing Applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050830454" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr020528" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-21-423-2017", "name": "Looking beyond general metrics for model comparison – Lessons from an international model intercomparison study", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85011008984" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-21-423-2017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2016.12.035", "name": "Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time-lapse ERT", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2016.12.035" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85008941081" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016wr019574", "name": "Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016wr019574" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991698513" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2166/nh.2015.221", "name": "Comparing classical performance measures with signature indices derived from flow duration curves to assess model structures as tools for catchment classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2166/nh.2015.221" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959253863" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015wr017398", "name": "From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84969399001" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015wr017398" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/hydrology3020022", "name": "Is catchment classification possible by means of multiple model structures? A case study based on 99 catchments in Germany", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052718459" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/hydrology3020022" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.10393", "name": "Towards more systematic perceptual model development: A case study using 3 Luxembourgish catchments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10393" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84930380014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-18-4861-2014", "name": "A constraint-based search algorithm for parameter identification of environmental models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84916910034" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-18-4861-2014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6947189", "name": "Assimilating satellite-derived soil moisture products into a distributed hydrological model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911446392" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6947189" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.9726", "name": "Catchment properties, function, and conceptual model representation: Is there a correspondence?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.9726" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84892446527" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014gl061668", "name": "Climate controls how ecosystems size the root zone storage capacity at catchment scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923321566" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014gl061668" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-18-1895-2014", "name": "Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-18-1895-2014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84901280735" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-18-4839-2014", "name": "Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-18-4839-2014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84916918926" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/02626667.2013.803183", "name": "A decade of Predictions in Ungauged Basins (PUB)-a review", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/02626667.2013.803183" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883487379" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-17-1893-2013", "name": "A framework to assess the realism of model structures using hydrological signatures", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-17-1893-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879066133" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-17-149-2013", "name": "An approach to identify time consistent model parameters: Sub-period calibration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-17-149-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872722437" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-17-4441-2013", "name": "Fuzzy committees of specialized rainfall-runoff models: Further enhancements and tests", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887832764" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-17-4441-2013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-17-4227-2013", "name": "The influence of conceptual model structure on model performance: A comparative study for 237 French catchments", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887100781" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-17-4227-2013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.advwatres.2012.03.022", "name": "Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.advwatres.2012.03.022" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861446295" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2012.06.047", "name": "Microwave links for rainfall estimation in an urban environment: Insights from an experimental setup in Luxembourg-City", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2012.06.047" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84866175254" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012wr012547", "name": "Reply to comment by K. Beven et al. on \"pursuing the method of multiple working hypotheses for hydrological modeling\"", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868630666" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012wr012547" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pce.2010.07.019", "name": "A process proof test for model concepts: Modelling the meso-scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pce.2010.07.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79551645307" } ] }, { "@type": "CreativeWork", "name": "Battling hydrological monsters: Insights into numerical approximations, data uncertainty and structural errors", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84878487294" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010wr010174", "name": "Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr010174" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862754951" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011wr010748", "name": "Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-81755187120" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011wr010748" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-15-3275-2011", "name": "Hydrological landscape classification: Investigating the performance of HAND based landscape classifications in a central European meso-scale catchment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80455164770" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-15-3275-2011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010wr009525", "name": "Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955964338" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr009525" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010wr009827", "name": "Pursuing the method of multiple working hypotheses for hydrological modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr009827" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053590883" } ] }, { "@type": "CreativeWork", "name": "An approach for matching accuracy and predictive capability in hydrological model development", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650622586" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.7595", "name": "Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954379165" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.7595" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009wr008648", "name": "Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009wr008648" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78049432883" } ] }, { "@type": "CreativeWork", "name": "How can we create generalisable hypotheses from small basin studies?", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79551521167" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-13-1727-2009", "name": "Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951840107" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-13-1727-2009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.7426", "name": "The rivers are alive: On the potential for diatoms as a tracer of water source and hydrological connectivity", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.7426" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-69949095831" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2007wr006386", "name": "Learning from model improvement: On the contribution of complementary data to process understanding", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-49449092825" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2007wr006386" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pce.2008.06.008", "name": "Moving from model calibration towards process understanding", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-52949096088" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pce.2008.06.008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2006wr005563", "name": "Understanding catchment behavior through stepwise model concept improvement", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006wr005563" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-39749098431" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2006wr005098", "name": "A comparison of alternative multiobjective calibration strategies for hydrological modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006wr005098" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247570378" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-11-1797-2007", "name": "Soft combination of local models in a multi-objective framework", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-11-1797-2007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-36549018689" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-10-139-2006", "name": "Is the groundwater reservoir linear? Learning from data in hydrological modelling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-10-139-2006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247612216" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-10-937-2006", "name": "Modelling subsurface storm flow with the Representative Elementary Watershed (REW) approach: Application to the Alzette River Basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-10-937-2006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33845481801" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pce.2004.11.002", "name": "Modeling runoff generation in the Geer river basin with improved model parameterizations to the REW approach", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pce.2004.11.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-19944404796" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pce.2004.11.001", "name": "Numerical simulations of runoff generation with surface water-groundwater interactions in the Alzette river alluvial plain (Luxembourg)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pce.2004.11.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-19944418305" } ] }, { "@type": "CreativeWork", "name": "Towards an increased performance of flood forecasting through assimilation of remotely sensed soil saturation levels in conceptual rainfall-runoff models", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879698768" } } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "8636378000" } }
}