Item talk:Q142261

From geokb

{

 "OpenAlex": {
   "id": "https://openalex.org/A5049173779",
   "orcid": "https://orcid.org/0000-0002-4155-630X",
   "display_name": "Prashant K. Srivastava",
   "display_name_alternatives": [
     "Prashant Srivastava",
     "Prashant Kumar Srivastava",
     "P. K. Srivastava",
     "P. Srivastava",
     "Prashant K. Srivastava",
     "Prashant Srivastav"
   ],
   "works_count": 400,
   "cited_by_count": 8164,
   "summary_stats": {
     "2yr_mean_citedness": 2.3076923076923075,
     "h_index": 50,
     "i10_index": 151
   },
   "ids": {
     "openalex": "https://openalex.org/A5049173779",
     "orcid": "https://orcid.org/0000-0002-4155-630X"
   },
   "affiliations": [
     {
       "institution": {
         "id": "https://openalex.org/I91357014",
         "ror": "https://ror.org/04cdn2797",
         "display_name": "Banaras Hindu University",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I91357014"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2021,
         2020,
         2019,
         2018,
         2017,
         2016,
         2015
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4665924",
         "ror": "https://ror.org/03zdwsf69",
         "display_name": "University of Rostock",
         "country_code": "DE",
         "type": "education",
         "lineage": [
           "https://openalex.org/I4665924"
         ]
       },
       "years": [
         2024
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I56404289",
         "ror": "https://ror.org/01kh5gc44",
         "display_name": "Indian Institute of Technology BHU",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I56404289"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2018
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I1292875679",
         "ror": "https://ror.org/03qn8fb07",
         "display_name": "Commonwealth Scientific and Industrial Research Organisation",
         "country_code": "AU",
         "type": "government",
         "lineage": [
           "https://openalex.org/I1292875679",
           "https://openalex.org/I2801453606",
           "https://openalex.org/I4387156119"
         ]
       },
       "years": [
         2024
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I174025329",
         "ror": "https://ror.org/016gb9e15",
         "display_name": "University of the Sunshine Coast",
         "country_code": "AU",
         "type": "education",
         "lineage": [
           "https://openalex.org/I174025329"
         ]
       },
       "years": [
         2023
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I167751958",
         "ror": "https://ror.org/00ykac431",
         "display_name": "Institute of Chemical Technology",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I167751958"
         ]
       },
       "years": [
         2023
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210100914",
         "ror": "https://ror.org/013cf5k59",
         "display_name": "Ministry of Earth Sciences",
         "country_code": "IN",
         "type": "government",
         "lineage": [
           "https://openalex.org/I4210100914"
         ]
       },
       "years": [
         2022,
         2021
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I5847235",
         "ror": "https://ror.org/04q2jes40",
         "display_name": "University of Petroleum and Energy Studies",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I5847235"
         ]
       },
       "years": [
         2022
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I1306266525",
         "ror": "https://ror.org/0171mag52",
         "display_name": "Goddard Space Flight Center",
         "country_code": "US",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I1306266525",
           "https://openalex.org/I4210124779"
         ]
       },
       "years": [
         2020,
         2019,
         2018,
         2017,
         2016,
         2015,
         2014
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210131147",
         "ror": "https://ror.org/037skf023",
         "display_name": "SRM University",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I145286018",
           "https://openalex.org/I4210131147"
         ]
       },
       "years": [
         2019
       ]
     }
   ],
   "last_known_institutions": [
     {
       "id": "https://openalex.org/I56404289",
       "ror": "https://ror.org/01kh5gc44",
       "display_name": "Indian Institute of Technology BHU",
       "country_code": "IN",
       "type": "education",
       "lineage": [
         "https://openalex.org/I56404289"
       ]
     },
     {
       "id": "https://openalex.org/I91357014",
       "ror": "https://ror.org/04cdn2797",
       "display_name": "Banaras Hindu University",
       "country_code": "IN",
       "type": "education",
       "lineage": [
         "https://openalex.org/I91357014"
       ]
     }
   ],
   "topics": [
     {
       "id": "https://openalex.org/T11312",
       "display_name": "Remote Sensing of Soil Moisture",
       "count": 93,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "count": 62,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11234",
       "display_name": "Satellite-Based Precipitation Estimation and Validation",
       "count": 58,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10330",
       "display_name": "Hydrological Modeling and Water Resource Management",
       "count": 45,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10029",
       "display_name": "Climate Change and Variability Research",
       "count": 32,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "count": 31,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10466",
       "display_name": "Numerical Weather Prediction Models",
       "count": 29,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "count": 28,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10716",
       "display_name": "Mechanics and Transport in Unsaturated Soils",
       "count": 26,
       "subfield": {
         "id": "https://openalex.org/subfields/2205",
         "display_name": "Civil and Structural Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10930",
       "display_name": "Global Flood Risk Assessment and Management",
       "count": 22,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "count": 21,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11333",
       "display_name": "Arctic Permafrost Dynamics and Climate Change",
       "count": 20,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11186",
       "display_name": "Global Drought Monitoring and Assessment",
       "count": 18,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10801",
       "display_name": "Synthetic Aperture Radar Interferometry",
       "count": 17,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10266",
       "display_name": "Global Forest Drought Response and Climate Change",
       "count": 17,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12543",
       "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques",
       "count": 16,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10644",
       "display_name": "Impacts of Climate Change on Glaciers and Water Availability",
       "count": 16,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10640",
       "display_name": "Chemometrics in Analytical Chemistry and Food Technology",
       "count": 15,
       "subfield": {
         "id": "https://openalex.org/subfields/1602",
         "display_name": "Analytical Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/16",
         "display_name": "Chemistry"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "count": 14,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11404",
       "display_name": "Deficit Irrigation for Agricultural Water Management",
       "count": 12,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10535",
       "display_name": "Landslide Hazards and Risk Assessment",
       "count": 12,
       "subfield": {
         "id": "https://openalex.org/subfields/2308",
         "display_name": "Management, Monitoring, Policy and Law"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11490",
       "display_name": "Hydrological Modeling using Machine Learning Methods",
       "count": 11,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14365",
       "display_name": "Non-destructive Leaf Area Estimation Methods",
       "count": 11,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10770",
       "display_name": "Digital Soil Mapping Techniques",
       "count": 11,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12157",
       "display_name": "Machine Learning for Mineral Prospectivity Mapping",
       "count": 10,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "topic_share": [
     {
       "id": "https://openalex.org/T11312",
       "display_name": "Remote Sensing of Soil Moisture",
       "value": 0.0009069,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11234",
       "display_name": "Satellite-Based Precipitation Estimation and Validation",
       "value": 0.0006923,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "value": 0.0004347,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12543",
       "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques",
       "value": 0.0002623,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10801",
       "display_name": "Synthetic Aperture Radar Interferometry",
       "value": 0.0002448,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "value": 0.0002385,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14252",
       "display_name": "Multidisciplinary Research in Science and Technology",
       "value": 0.0002378,
       "subfield": {
         "id": "https://openalex.org/subfields/2206",
         "display_name": "Computational Mechanics"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11186",
       "display_name": "Global Drought Monitoring and Assessment",
       "value": 0.000177,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11490",
       "display_name": "Hydrological Modeling using Machine Learning Methods",
       "value": 0.0001604,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "value": 0.0001566,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10716",
       "display_name": "Mechanics and Transport in Unsaturated Soils",
       "value": 0.0001522,
       "subfield": {
         "id": "https://openalex.org/subfields/2205",
         "display_name": "Civil and Structural Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14365",
       "display_name": "Non-destructive Leaf Area Estimation Methods",
       "value": 0.000151,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10330",
       "display_name": "Hydrological Modeling and Water Resource Management",
       "value": 0.0001396,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11333",
       "display_name": "Arctic Permafrost Dynamics and Climate Change",
       "value": 0.0001186,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10930",
       "display_name": "Global Flood Risk Assessment and Management",
       "value": 0.0001121,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10029",
       "display_name": "Climate Change and Variability Research",
       "value": 0.0001105,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10770",
       "display_name": "Digital Soil Mapping Techniques",
       "value": 0.0001098,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11404",
       "display_name": "Deficit Irrigation for Agricultural Water Management",
       "value": 0.0001079,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10466",
       "display_name": "Numerical Weather Prediction Models",
       "value": 0.0001009,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10439",
       "display_name": "Adaptation to Climate Change in Agriculture",
       "value": 9.72e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1105",
         "display_name": "Ecology, Evolution, Behavior and Systematics"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10766",
       "display_name": "Urban Heat Islands and Mitigation Strategies",
       "value": 8.99e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10266",
       "display_name": "Global Forest Drought Response and Climate Change",
       "value": 8.47e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "value": 7.71e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "value": 7.34e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10398",
       "display_name": "Stable Isotope Analysis of Groundwater and Precipitation",
       "value": 6.32e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1906",
         "display_name": "Geochemistry and Petrology"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "x_concepts": [
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 89.0
     },
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 88.0
     },
     {
       "id": "https://openalex.org/C39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 78.5
     },
     {
       "id": "https://openalex.org/C127413603",
       "wikidata": "https://www.wikidata.org/wiki/Q11023",
       "display_name": "Engineering",
       "level": 0,
       "score": 73.0
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 71.0
     },
     {
       "id": "https://openalex.org/C86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 64.8
     },
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 63.5
     },
     {
       "id": "https://openalex.org/C18903297",
       "wikidata": "https://www.wikidata.org/wiki/Q7150",
       "display_name": "Ecology",
       "level": 1,
       "score": 58.3
     },
     {
       "id": "https://openalex.org/C62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 58.3
     },
     {
       "id": "https://openalex.org/C153294291",
       "wikidata": "https://www.wikidata.org/wiki/Q25261",
       "display_name": "Meteorology",
       "level": 1,
       "score": 43.0
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 40.8
     },
     {
       "id": "https://openalex.org/C146978453",
       "wikidata": "https://www.wikidata.org/wiki/Q3798668",
       "display_name": "Aerospace engineering",
       "level": 1,
       "score": 35.3
     },
     {
       "id": "https://openalex.org/C1276947",
       "wikidata": "https://www.wikidata.org/wiki/Q333",
       "display_name": "Astronomy",
       "level": 1,
       "score": 34.8
     },
     {
       "id": "https://openalex.org/C187320778",
       "wikidata": "https://www.wikidata.org/wiki/Q1349130",
       "display_name": "Geotechnical engineering",
       "level": 1,
       "score": 33.8
     },
     {
       "id": "https://openalex.org/C111368507",
       "wikidata": "https://www.wikidata.org/wiki/Q43518",
       "display_name": "Oceanography",
       "level": 1,
       "score": 32.3
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 32.0
     },
     {
       "id": "https://openalex.org/C105795698",
       "wikidata": "https://www.wikidata.org/wiki/Q12483",
       "display_name": "Statistics",
       "level": 1,
       "score": 29.3
     },
     {
       "id": "https://openalex.org/C19269812",
       "wikidata": "https://www.wikidata.org/wiki/Q26540",
       "display_name": "Satellite",
       "level": 2,
       "score": 28.3
     },
     {
       "id": "https://openalex.org/C62520636",
       "wikidata": "https://www.wikidata.org/wiki/Q944",
       "display_name": "Quantum mechanics",
       "level": 1,
       "score": 25.8
     },
     {
       "id": "https://openalex.org/C119857082",
       "wikidata": "https://www.wikidata.org/wiki/Q2539",
       "display_name": "Machine learning",
       "level": 1,
       "score": 25.5
     },
     {
       "id": "https://openalex.org/C58640448",
       "wikidata": "https://www.wikidata.org/wiki/Q42515",
       "display_name": "Cartography",
       "level": 1,
       "score": 25.0
     },
     {
       "id": "https://openalex.org/C71924100",
       "wikidata": "https://www.wikidata.org/wiki/Q11190",
       "display_name": "Medicine",
       "level": 0,
       "score": 23.5
     },
     {
       "id": "https://openalex.org/C95457728",
       "wikidata": "https://www.wikidata.org/wiki/Q309",
       "display_name": "History",
       "level": 0,
       "score": 23.3
     },
     {
       "id": "https://openalex.org/C166957645",
       "wikidata": "https://www.wikidata.org/wiki/Q23498",
       "display_name": "Archaeology",
       "level": 1,
       "score": 22.3
     },
     {
       "id": "https://openalex.org/C49204034",
       "wikidata": "https://www.wikidata.org/wiki/Q52139",
       "display_name": "Climatology",
       "level": 1,
       "score": 22.0
     }
   ],
   "counts_by_year": [
     {
       "year": 2024,
       "works_count": 33,
       "cited_by_count": 1332
     },
     {
       "year": 2023,
       "works_count": 36,
       "cited_by_count": 1548
     },
     {
       "year": 2022,
       "works_count": 52,
       "cited_by_count": 1934
     },
     {
       "year": 2021,
       "works_count": 52,
       "cited_by_count": 1754
     },
     {
       "year": 2020,
       "works_count": 36,
       "cited_by_count": 1098
     },
     {
       "year": 2019,
       "works_count": 29,
       "cited_by_count": 853
     },
     {
       "year": 2018,
       "works_count": 20,
       "cited_by_count": 713
     },
     {
       "year": 2017,
       "works_count": 17,
       "cited_by_count": 576
     },
     {
       "year": 2016,
       "works_count": 29,
       "cited_by_count": 564
     },
     {
       "year": 2015,
       "works_count": 34,
       "cited_by_count": 456
     },
     {
       "year": 2014,
       "works_count": 31,
       "cited_by_count": 244
     },
     {
       "year": 2013,
       "works_count": 16,
       "cited_by_count": 155
     },
     {
       "year": 2012,
       "works_count": 12,
       "cited_by_count": 37
     }
   ],
   "works_api_url": "https://api.openalex.org/works?filter=author.id:A5049173779",
   "updated_date": "2024-08-26T13:43:59.606398",
   "created_date": "2023-07-21",
   "_id": "https://openalex.org/A5049173779"
 },
 "ORCID": {
   "@context": "http://schema.org",
   "@type": "Person",
   "@id": "https://orcid.org/0000-0002-4155-630X",
   "mainEntityOfPage": "https://orcid.org/0000-0002-4155-630X",
   "givenName": "Prashant K.",
   "familyName": "Srivastava",
   "alumniOf": [
     {
       "@type": "Organization",
       "name": "Jawaharlal Nehru University",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "28754"
       }
     },
     {
       "@type": "Organization",
       "name": "University of Bristol",
       "alternateName": "Department of Civil Engineering",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "1980"
       }
     },
     {
       "@type": "Organization",
       "name": "Banaras Hindu University",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "30114"
       }
     }
   ],
   "affiliation": [
     {
       "@type": "Organization",
       "name": "Banaras Hindu University",
       "alternateName": "IESD",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "30114"
       }
     },
     {
       "@type": "Organization",
       "name": "NASA Jet Propulsion Laboratory",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "53411"
       }
     },
     {
       "@type": "Organization",
       "name": "NASA Goddard Space Flight Center",
       "alternateName": "Hydrological Sciences Branch",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "53523"
       }
     },
     {
       "@type": "Organization",
       "name": "University of Maryland ",
       "alternateName": "ESSIC",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "14701"
       }
     },
     {
       "@type": "Organization",
       "name": "University of Bristol",
       "alternateName": "Civil Engineering",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "1980"
       }
     },
     {
       "@type": "Organization",
       "name": "Sardar Patel University",
       "alternateName": "NVPAS",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "29037"
       }
     }
   ],
   "@reverse": {
     "creator": [
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.pce.2024.103570",
         "name": "Appraisal of Visible/IR and microwave datasets for land surface fluxes estimation using machine learning techniques",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.pce.2024.103570"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/02626667.2024.2347981",
         "name": "Hydrological modelling for post-monsoon agricultural drought assessment and implications for the agro-economy",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/02626667.2024.2347981"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu24-8345",
         "name": "A machine learning based approach for forecasting remotely sensed vegetation health in Italy.",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu24-8345"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu24-4608",
         "name": "Future projection of  extreme climate events using various general circulation model scenarios over the Mahi River Basin, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu24-4608"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/hydrology11020027",
         "name": "Long-Term Spatiotemporal Investigation of Various Rainfall Intensities over Central India Using EO Datasets",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/hydrology11020027"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-3-031-51053-3_1",
         "name": "Concepts of Disasters and Research Themes: Editorial Message",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/978-3-031-51053-3_1"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-3-031-51053-3_16",
         "name": "Geospatial Techniques for Drought Assessment in Semi-arid Region of Central India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/978-3-031-51053-3_16"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2023.2280597",
         "name": "Mapping and monitoring of vegetation regeneration and fuel under major transmission power lines through image and photogrammetric analysis of drone-derived data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2023.2280597"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2023.2247380",
         "name": "Performance assessment of the Sentinel-2 LAI products and data fusion techniques for developing new LAI datasets over the high-altitude Himalayan forests",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2023.2247380"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1088/1748-9326/acffdf",
         "name": "Understanding the soil water dynamics during excess and deficit rainfall conditions over the core monsoon zone of India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1088/1748-9326/acffdf"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs15123133",
         "name": "Evaluating the Performance of PRISMA Shortwave Infrared Imaging Sensor for Mapping Hydrothermally Altered and Weathered Minerals Using the Machine Learning Paradigm",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs15123133"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu23-6098",
         "name": "Assessment of the impact of soil hydraulic parameters based on various Microwave datasets on estimation of hydrological fluxes",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu23-6098"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s11269-022-03372-1",
         "name": "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s11269-022-03372-1"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su15075675",
         "name": "Appraisal of Climate Response to Vegetation Indices over Tropical Climate Region in India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su15075675"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su15054668",
         "name": "Changes in Extremes Rainfall Events in Present and Future Climate Scenarios over the Teesta River Basin, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su15054668"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi12030105",
         "name": "Assessment of a Dynamic Physically Based Slope Stability Model to Evaluate Timing and Distribution of Rainfall-Induced Shallow Landslides",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi12030105"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs15030706",
         "name": "Development of High-Resolution Soil Hydraulic Parameters with Use of Earth Observations for Enhancing Root Zone Soil Moisture Product",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs15030706"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su15032147",
         "name": "Potassium Simulation Using HYDRUS-1D with Satellite-Derived Meteorological Data under Boro Rice Cultivation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su15032147"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2022.3218945",
         "name": "Passive Only Microwave Soil Moisture Retrieval in Indian Cropping Conditions: Model Parameterization and Validation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2022.3218945"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2022.2071476",
         "name": "A hyperspectral R based leaf area index estimator: model development and implementation using AVIRIS-NG",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2022.2071476"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2021.1983031",
         "name": "Development of hyperspectral indices for anti-cancerous Taxol content estimation in the Himalayan region",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2021.1983031"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2022.2138983",
         "name": "Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2022.2138983"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2022.2036824",
         "name": "Tree's detection & health's assessment from ultra-high resolution UAV imagery and deep learning",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2022.2036824"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs14235968",
         "name": "Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs14235968"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/f13121973",
         "name": "Impact of Environmental Gradients on Phenometrics of Major Forest Types of Kumaon Region of the Western Himalaya",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/f13121973"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2021.1933209",
         "name": "Appraisal of dual polarimetric radar vegetation index in first order microwave scattering algorithm using sentinel \u2013 1A (C - band) and ALOS - 2 (L - band) SAR data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2021.1933209"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2021.1936208",
         "name": "Rainfall rate estimation over India using global precipitation measurement\u2019s microwave imager datasets and different variants of fuzzy information system",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2021.1936208"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w14193179",
         "name": "Improvement of the \u201cTriangle Method\u201d for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/w14193179"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs14153560",
         "name": "Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs14153560"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2020.1870167",
         "name": "Band selection algorithms for foliar trait retrieval using AVIRIS-NG: a comparison of feature based attribute evaluators",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2020.1870167"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi11050301",
         "name": "Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi11050301"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu22-11703",
         "name": "Soil Surface Moisture retrievals from EO and cosmic ray- based approach for selected sites in the UK",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu22-11703"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2020.1801862",
         "name": "Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2020.1801862"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu22-7726",
         "name": "Investigating the links between primary metabolites of medicinal species with leaf hyperspectral reflectance",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu22-7726"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-egu22-10163",
         "name": "Utilizing hyperspectral imagery for burnt area mapping in a Greek setting",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-egu22-10163"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/s22041354",
         "name": "Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/s22041354"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.asr.2021.08.022",
         "name": "Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.asr.2021.08.022"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.scitotenv.2021.150639",
         "name": "Model-based ensembles: Lessons learned from retrospective analysis of COVID-19 infection forecasts across 10 countries",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.scitotenv.2021.150639"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2022.3144830",
         "name": "Improving Spatial Representation of Soil Moisture Through the Incorporation of Single-Channel Algorithm With Different Downscaling Approaches",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2022.3144830"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2020.3034420",
         "name": "Synergy of Vegetation and Soil Microwave Scattering Model for Leaf Area Index Retrieval Using C-Band Sentinel-1A Satellite Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2020.3034420"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/f12121726",
         "name": "Statistical Unfolding Approach to Understand Influencing Factors for Taxol Content Variation in High Altitude Himalayan Region",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/f12121726"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431161.2021.1988185",
         "name": "Exploring the potential of SCAT-SAR SWI for soil moisture retrievals at selected COSMOS-UK sites",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/01431161.2021.1988185"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jsen.2021.3099937",
         "name": "Evaluation of Radar/Optical Based Vegetation Descriptors in Water Cloud Model for Soil Moisture Retrieval",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jsen.2021.3099937"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10668-020-01144-8",
         "name": "Subsurface nutrient modelling using finite element model under Boro rice cropping system",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10668-020-01144-8"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs13163284",
         "name": "Integrating Multi-Sensors Data for Species Distribution Mapping Using Deep Learning and Envelope Models",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs13163284"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi10080507",
         "name": "Random Forests with Bagging and Genetic Algorithms Coupled with Least Trimmed Squares Regression for Soil Moisture Deficit Using SMOS Satellite Soil Moisture",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi10080507"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w13121695",
         "name": "Long-Term Trend Analysis of Precipitation and Extreme Events over Kosi River Basin in India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/w13121695"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2019.1629647",
         "name": "Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers\u2014a review of the state of the art",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2019.1629647"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su13116019",
         "name": "SMAP Soil Moisture Product Assessment over Wales, U.K., Using Observations from the WSMN Ground Monitoring Network",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su13116019"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10668-020-00827-6",
         "name": "Sensitivity analysis of artificial neural network for chlorophyll prediction using hyperspectral data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10668-020-00827-6"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10668-020-00742-w",
         "name": "Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10668-020-00742-w"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jsen.2020.3039855",
         "name": "Denoising AVIRIS-NG Data for Generation of New Chlorophyll Indices",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jsen.2020.3039855"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su13031042",
         "name": "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su13031042"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi9090530",
         "name": "An Integrated Spatiotemporal Pattern Analysis Model to Assess and Predict the Degradation of Protected Forest Areas",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi9090530"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/f11070750",
         "name": "Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/f11070750"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/2150704x.2020.1730468",
         "name": "Evaluating the 2018 extreme flood hazard events in Kerala, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/2150704x.2020.1730468"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10668-019-00353-0",
         "name": "Mapping and monitoring of the land use/cover changes in the wider area of Itanos, Crete, using very high resolution EO imagery with specific interest in archaeological sites",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10668-019-00353-0"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2019.2927468",
         "name": "ScatSat-1 Leaf Area Index Product: Models Comparison, Development, and Validation Over Cropland",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2019.2927468"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2018.1520921",
         "name": "Integrated framework for soil and water conservation in Kosi River Basin",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2018.1520921"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs12040597",
         "name": "Use of Hyperion for Mangrove Forest Carbon Stock Assessment in Bhitarkanika Forest Reserve: A Contribution Towards Blue Carbon Initiative",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs12040597"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s11069-019-03829-4",
         "name": "Appraisal of hydro-meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s11069-019-03829-4"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/b978-0-08-102894-0.00021-8",
         "name": "Future perspectives and challenges in hyperspectral remote sensing",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/b978-0-08-102894-0.00021-8"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/access.2020.3029614",
         "name": "Short-Term Statistical Forecasts of COVID-19 Infections in India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/access.2020.3029614"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10661-019-7730-7",
         "name": "Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10661-019-7730-7"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/resources8020070",
         "name": "GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/resources8020070"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs11050579",
         "name": "Operational Soil Moisture from ASCAT in Support of Water Resources Management",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs11050579"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/s19040762",
         "name": "Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/s19040762"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs11040439",
         "name": "Integration of Microwave and Optical/Infrared Derived Datasets for a Drought Hazard Inventory in a Sub-Tropical Region of India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs11040439"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi7080326",
         "name": "Identification of Painted Rock-Shelter Sites Using GIS Integrated with a Decision Support System and Fuzzy Logic",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi7080326"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2016.1265594",
         "name": "Delineation and classification of rural\u2013urban fringe using geospatial technique and onboard DMSP\u2013Operational Linescan System",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2016.1265594"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w10040381",
         "name": "Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/w10040381"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su10010181",
         "name": "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su10010181"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions"
       },
       {
         "@type": "CreativeWork",
         "name": "Content-Based Image Retrieval Using Multiscale Local Spatial Binary Gaussian Co-occurrence Pattern"
       },
       {
         "@type": "CreativeWork",
         "name": "Delineation and classification of rural--urban fringe using geospatial technique and onboard DMSP--Operational Linescan System"
       },
       {
         "@type": "CreativeWork",
         "name": "Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of satellite precipitation products for extreme flood events: case study in Peninsular Malaysia"
       },
       {
         "@type": "CreativeWork",
         "name": "INTEGRATION OF SATELLITE, GLOBAL REANALYSIS DATA AND MACROSCALE HYDROLOGICAL MODEL FOR DROUGHT ASSESSMENT IN SUB-TROPICAL REGION OF INDIA."
       },
       {
         "@type": "CreativeWork",
         "name": "Multi-temporal NDVI and surface temperature analysis for Urban Heat Island inbuilt surrounding of sub-humid region: A case study of two geographical regions"
       },
       {
         "@type": "CreativeWork",
         "name": "Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS\u00ae"
       },
       {
         "@type": "CreativeWork",
         "name": "Remote sensing of aerosols from space: retrieval of properties and applications"
       },
       {
         "@type": "CreativeWork",
         "name": "Role of parameterized convection scheme in Regional Climate Model to simulate Indian summer monsoon rainfall"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil erosion assessment on hillslope of GCE using RUSLE model"
       },
       {
         "@type": "CreativeWork",
         "name": "Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment"
       },
       {
         "@type": "CreativeWork",
         "name": "Vegetation water content retrieval using scatterometer data at X-band"
       },
       {
         "@type": "CreativeWork",
         "name": "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5"
       },
       {
         "@type": "CreativeWork",
         "name": "Content-Based Image Retrieval using Local Binary Curvelet Co-occurrence Pattern\u2014A Multiresolution Technique"
       },
       {
         "@type": "CreativeWork",
         "name": "Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information"
       },
       {
         "@type": "CreativeWork",
         "name": "Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling-A case study of Surat City, Lower Tapi Basin, India"
       },
       {
         "@type": "CreativeWork",
         "name": "Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi"
       },
       {
         "@type": "CreativeWork",
         "name": "Groundwater assessment in a canal command area for sustainable irrigation in a part of the Indo-Gangetic alluvial plain."
       },
       {
         "@type": "CreativeWork",
         "name": "Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information"
       },
       {
         "@type": "CreativeWork",
         "name": "Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India"
       },
       {
         "@type": "CreativeWork",
         "name": "Monitoring Changes in Urban Cover Using Landsat Satellite Images and Demographical Information"
       },
       {
         "@type": "CreativeWork",
         "name": "Overview of Sensitivity Analysis Methods in Earth Observation Modeling"
       },
       {
         "@type": "CreativeWork",
         "name": "Quantitative Analysis of Transient Intertidal Submarine Groundwater Discharge in Coastal Aquifer of Western Japan"
       },
       {
         "@type": "CreativeWork",
         "name": "Radar Rainfall Sensitivity Analysis Using Multivariate Distributed Ensemble Generator"
       },
       {
         "@type": "CreativeWork",
         "name": "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation"
       },
       {
         "@type": "CreativeWork",
         "name": "SWAT Model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm"
       },
       {
         "@type": "CreativeWork",
         "name": "Satellite soil moisture: Review of theory and applications in water resources"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity of Wells in a Large Groundwater Monitoring Network and Its Evaluation Using GRACE Satellite Derived Information"
       },
       {
         "@type": "CreativeWork",
         "name": "Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: impacts of seasonality and precursor gases"
       },
       {
         "@type": "CreativeWork",
         "name": "WRF-PDM: Prognostic approach for discharge prediction in ungauged catchment"
       },
       {
         "@type": "CreativeWork",
         "name": "Why WRF-PDM?"
       },
       {
         "@type": "CreativeWork",
         "name": "A Geographic Information System (GIS) Based Assessment of Hydropower Potential within the Upper Indus Basin Pakistan"
       },
       {
         "@type": "CreativeWork",
         "name": "A statistical significance of differences in classification accuracy of crop types using different classification algorithms"
       },
       {
         "@type": "CreativeWork",
         "name": "Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation"
       },
       {
         "@type": "CreativeWork",
         "name": "Book Review - Biophysical Applications of Satellite Remote Sensing"
       },
       {
         "@type": "CreativeWork",
         "name": "Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation"
       },
       {
         "@type": "CreativeWork",
         "name": "Content-based image retrieval using scale invariant feature transform and moments"
       },
       {
         "@type": "CreativeWork",
         "name": "Delineation and Zonation of Flood Prone Area Using Geo-hydrological Parameters: A Case Study of Lower Ghaghara River Valley"
       },
       {
         "@type": "CreativeWork",
         "name": "Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA from TOPEX and Jason satellite radar altimeter data"
       },
       {
         "@type": "CreativeWork",
         "name": "GIS Supported Water Use Master Plan: A Planning Tool for Integrated Water Resources Management in Nepal"
       },
       {
         "@type": "CreativeWork",
         "name": "GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India"
       },
       {
         "@type": "CreativeWork",
         "name": "Geospatial Technology for Water Resource Applications"
       },
       {
         "@type": "CreativeWork",
         "name": "Geospatial Technology for Water Resource Development in WGKKC2 Watershed"
       },
       {
         "@type": "CreativeWork",
         "name": "High-resolution WRF simulation of cloud properties over the super typhoon Haiyan: physics parameterizations and comparison against MODIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrative Use of Near-Surface Satellite Soil Moisture and Precipitation for Estimation of Improved Irrigation Scheduling Parameters"
       },
       {
         "@type": "CreativeWork",
         "name": "Introduction to Geospatial Technology for Water Resources"
       },
       {
         "@type": "CreativeWork",
         "name": "Land use/land cover classification using Sentinel-1 imagery and Support Vector Machines"
       },
       {
         "@type": "CreativeWork",
         "name": "Landscape transform and spatial metrics for mapping spatio-temporal land cover dynamics using Earth Observation datasets"
       },
       {
         "@type": "CreativeWork",
         "name": "Nonparametric Model for the Retrieval of Soil Moisture by Microwave Remote Sensing"
       },
       {
         "@type": "CreativeWork",
         "name": "Operational evapotranspiration estimates from SEVIRI in support of sustainable water management"
       },
       {
         "@type": "CreativeWork",
         "name": "Precipitation trend analysis of Sindh River basin, India, from 102-year record (1901--2002)"
       },
       {
         "@type": "CreativeWork",
         "name": "Reduced major axis approach for correcting GPM/GMI radiometric biases to coincide with radiative transfer simulation"
       },
       {
         "@type": "CreativeWork",
         "name": "Satellite Soil Moisture Retrieval: Techniques and Applications"
       },
       {
         "@type": "CreativeWork",
         "name": "Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts"
       },
       {
         "@type": "CreativeWork",
         "name": "Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity Analysis in Earth Observation Modelling"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil Moisture from Space: Techniques and Limitations"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil moisture deficit estimation through SMOS soil moisture and MODIS land surface temperature"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil moisture retrievals using optical/TIR methods"
       },
       {
         "@type": "CreativeWork",
         "name": "Spatial Integration of Rice-based Cropping Systems for Soil and Water Quality Assessment Using Geospatial Tools and Techniques"
       },
       {
         "@type": "CreativeWork",
         "name": "Spatiotemporal Estimates of Surface Soil Moisture from Space Using the T s/VI Feature Space"
       },
       {
         "@type": "CreativeWork",
         "name": "Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya"
       },
       {
         "@type": "CreativeWork",
         "name": "Uncertainty Quantification in the Infrared Surface Emissivity Model (ISEM)"
       },
       {
         "@type": "CreativeWork",
         "name": "Use of satellite soil moisture products for the operational mitigation of landslides risk in central Italy"
       },
       {
         "@type": "CreativeWork",
         "name": "Zhuo, L.(2016). Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts. Natural Hazards, 82 (2), 845-855. DOI"
       },
       {
         "@type": "CreativeWork",
         "name": "An introduction to factor analysis for radio frequency interference detection on satellite observations"
       },
       {
         "@type": "CreativeWork",
         "name": "Appraisal of NLDAS-2 multi-model simulated soil moistures for hydrological modelling"
       },
       {
         "@type": "CreativeWork",
         "name": "Appraisal of Weather Research and Forecasting Model Downscaling of Hydro-meteorological Variables and their Applicability for Discharge Prediction: Prognostic Approach for Ungauged Basin"
       },
       {
         "@type": "CreativeWork",
         "name": "Artificial neural network with different learning parameters for crop classification using multispectral datasets"
       },
       {
         "@type": "CreativeWork",
         "name": "Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, western coast of India: a synergistic evaluation using remote sensing"
       },
       {
         "@type": "CreativeWork",
         "name": "Assessing the influence of atmospheric and topographic correction and inclusion of SWIR bands in burned scars detection from high-resolution EO imagery: a case study using ASTER"
       },
       {
         "@type": "CreativeWork",
         "name": "Crop variables estimation by adaptive neuro-fuzzy inference system using bistatic scatterometer data"
       },
       {
         "@type": "CreativeWork",
         "name": "Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of the soil moisture operational estimates from SMOS in Europe: results over diverse ecosystems"
       },
       {
         "@type": "CreativeWork",
         "name": "Geochemical modeling to evaluate the mangrove forest water"
       },
       {
         "@type": "CreativeWork",
         "name": "Impact of complexity of radar rainfall uncertainty model on flow simulation"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India"
       },
       {
         "@type": "CreativeWork",
         "name": "Integration Of TRMM Rainfall In Numerical Model For Pesticide Prediction In Subtropical Climate"
       },
       {
         "@type": "CreativeWork",
         "name": "Performance Assessment of the SEVIRI Evapotranspiration Operational Product: Results Over Diverse Mediterranean Ecosystems"
       },
       {
         "@type": "CreativeWork",
         "name": "Performance Evaluation Of SMOS Soil Moisture Retrieval Parameters For Hydrological Application"
       },
       {
         "@type": "CreativeWork",
         "name": "Performance evaluation of WRF-Noah Land surface model estimated soil moisture for hydrological application: Synergistic evaluation using SMOS retrieved soil moisture"
       },
       {
         "@type": "CreativeWork",
         "name": "Performance of MODIS satellite and mesoscale model based land surface temperature for soil moisture deficit estimation using Neural Network"
       },
       {
         "@type": "CreativeWork",
         "name": "Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information"
       },
       {
         "@type": "CreativeWork",
         "name": "Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: evidence towards its use as a tool to study Earth's system interactions"
       },
       {
         "@type": "CreativeWork",
         "name": "Rain rate retrieval algorithm for conical-scanning microwave imagers aided by random forest, RReliefF, and multivariate adaptive regression splines (RAMARS)"
       },
       {
         "@type": "CreativeWork",
         "name": "Roughness parameter optimization using Land Parameter Retrieval Model and Soil Moisture Deficit: Implementation using SMOS brightness temperatures"
       },
       {
         "@type": "CreativeWork",
         "name": "SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting"
       },
       {
         "@type": "CreativeWork",
         "name": "Seasonal ensemble generator for radar rainfall using copula and autoregressive model"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil characterization based on land cover heterogeneity over a tropical landscape: an integrated approach using earth observation data-sets"
       },
       {
         "@type": "CreativeWork",
         "name": "Special Issue on\" Emerging science and applications with microwave remote sensing data\""
       },
       {
         "@type": "CreativeWork",
         "name": "Stratiform/convective rain delineation for TRMM microwave imager"
       },
       {
         "@type": "CreativeWork",
         "name": "Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band"
       },
       {
         "@type": "CreativeWork",
         "name": "Support vector regression for retrieval of soil moisture using bistatic scatterometer data at X-band"
       },
       {
         "@type": "CreativeWork",
         "name": "Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations"
       },
       {
         "@type": "CreativeWork",
         "name": "Towards Improving our Understanding on the Retrievals of Key Bio-physical Parameters from Space: the work done within the PREMIER-EO Project"
       },
       {
         "@type": "CreativeWork",
         "name": "Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project"
       },
       {
         "@type": "CreativeWork",
         "name": "Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece"
       },
       {
         "@type": "CreativeWork",
         "name": "Validating a 1-D SVAT model"
       },
       {
         "@type": "CreativeWork",
         "name": "Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2"
       },
       {
         "@type": "CreativeWork",
         "name": "WRF dynamical downscaling and bias correction schemes for NCEP estimated hydro-meteorological variables"
       },
       {
         "@type": "CreativeWork",
         "name": "Yahia Abbi Said, George P. Petropoulos"
       },
       {
         "@type": "CreativeWork",
         "name": "An appraisal of the accuracy of operational soil moisture estimates from SMOS MIRAS using validated in situ observations acquired in a Mediterranean environment"
       },
       {
         "@type": "CreativeWork",
         "name": "An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR"
       },
       {
         "@type": "CreativeWork",
         "name": "Application of geo-spatial technique for flood inundation mapping of low lying areas"
       },
       {
         "@type": "CreativeWork",
         "name": "Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine"
       },
       {
         "@type": "CreativeWork",
         "name": "Assessment of SMOS soil moisture retrieval parameters using tau-omega algorithms for soil moisture deficit estimation"
       },
       {
         "@type": "CreativeWork",
         "name": "CLOUDET: A Cloud Detection and Estimation Algorithm for Passive Microwave Imagers and Sounders Aided by Na\u0308\u0131ve Bayes Classifier and Multilayer Perceptron"
       },
       {
         "@type": "CreativeWork",
         "name": "Chlorophyll retrieval using ground based hyperspectral data from a tropical area of india using regression algorithms"
       },
       {
         "@type": "CreativeWork",
         "name": "Computational Intelligence Techniques in Earth and Environmental Sciences"
       },
       {
         "@type": "CreativeWork",
         "name": "Content-based image retrieval using moments of wavelet transform"
       },
       {
         "@type": "CreativeWork",
         "name": "Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of Dielectric Mixing Models for Passive Microwave Soil Moisture Retrieval Using Data From ComRAD Ground-Based SMAP Simulator"
       },
       {
         "@type": "CreativeWork",
         "name": "Exploring the Influence of Topographic Correction and SWIR Spectral Information Inclusion on Burnt Scars Detection From High Resolution EO Imagery: A Case Study Using ASTER imagery"
       },
       {
         "@type": "CreativeWork",
         "name": "Ice cloud detection from AMSU-A, MHS, and HIRS satellite instruments inferred by cloud profiling radar"
       },
       {
         "@type": "CreativeWork",
         "name": "Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, India"
       },
       {
         "@type": "CreativeWork",
         "name": "Morphometric Analysis of Upper Tons Basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Multivariate Distributed Ensemble Generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate"
       },
       {
         "@type": "CreativeWork",
         "name": "Non-parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19--85 GHz channels with the Random Forests algorithm"
       },
       {
         "@type": "CreativeWork",
         "name": "Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes"
       },
       {
         "@type": "CreativeWork",
         "name": "Remote Sensing Applications in Environmental Research"
       },
       {
         "@type": "CreativeWork",
         "name": "Remote sensing based identification of painted rock shelter sites: appraisal using advanced wide field sensor, neural network and field observations"
       },
       {
         "@type": "CreativeWork",
         "name": "Seasonal parameterizations of the tau-omega model using the ComRAD ground-based SMAP simulator"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity and uncertainty analysis of estimated soil hydraulic parameters for simulating soil water content"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity associated with bright band/melting layer location on radar reflectivity correction for attenuation at C-band using differential propagation phase measurements"
       },
       {
         "@type": "CreativeWork",
         "name": "Sensitivity exploration of SimSphere land surface model towards its use for operational products development from Earth observation data"
       },
       {
         "@type": "CreativeWork",
         "name": "The development of numerical weather models-a review"
       },
       {
         "@type": "CreativeWork",
         "name": "Towards the Evaluation of the SEVIRI  Evapotranspiration Operational Product Accuracy on a  Continental scale: Findings Over Diverse European  ecosystems"
       },
       {
         "@type": "CreativeWork",
         "name": "Tracking a tropical cyclone through WRF--ARW simulation and sensitivity of model physics"
       },
       {
         "@type": "CreativeWork",
         "name": "Validating Operational Evapotranspiration Estimates from Geostationary Orbit Data: Results over European Ecosystems"
       },
       {
         "@type": "CreativeWork",
         "name": "Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate"
       },
       {
         "@type": "CreativeWork",
         "name": "Artificial Intelligence Techniques for Downscaling SMOS Soil Moisture using MODIS Land Surface Temperature"
       },
       {
         "@type": "CreativeWork",
         "name": "Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model"
       },
       {
         "@type": "CreativeWork",
         "name": "Content-based image retrieval using moments"
       },
       {
         "@type": "CreativeWork",
         "name": "Data fusion techniques for an improved soil moisture retrieval using SMOS and WRF-NOAH Land surface model"
       },
       {
         "@type": "CreativeWork",
         "name": "Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate"
       },
       {
         "@type": "CreativeWork",
         "name": "Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme"
       },
       {
         "@type": "CreativeWork",
         "name": "Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Heavy metals pollution in soil-water-vegetation continuum irrigated with ground water and untreated sewage"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrated assessment of groundwater influenced by a confluence river system: concurrence with remote sensing and geochemical modelling"
       },
       {
         "@type": "CreativeWork",
         "name": "Land degradation severity assessment with sand encroachment in an ecologically fragile arid environment: a geospatial perspective"
       },
       {
         "@type": "CreativeWork",
         "name": "Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application"
       },
       {
         "@type": "CreativeWork",
         "name": "Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications"
       },
       {
         "@type": "CreativeWork",
         "name": "A Joss--Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges"
       },
       {
         "@type": "CreativeWork",
         "name": "A Study on Distribution of Heavy Metal Contamination in the Vegetables using GIS and analytical technique"
       },
       {
         "@type": "CreativeWork",
         "name": "Artificial intelligence techniques for clutter identification with polarimetric radar signatures"
       },
       {
         "@type": "CreativeWork",
         "name": "Assessment of SMOS satellite derived soil moisture for soil moisture deficit estimation."
       },
       {
         "@type": "CreativeWork",
         "name": "Assessment of TRMM rainfall for vertical soil moisture prediction: Implication through HYDRUS 1D."
       },
       {
         "@type": "CreativeWork",
         "name": "Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey"
       },
       {
         "@type": "CreativeWork",
         "name": "Ensembe of bagged decision trees to discriminate rain/no rain status from the TRMM Microwave Imager."
       },
       {
         "@type": "CreativeWork",
         "name": "Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach"
       },
       {
         "@type": "CreativeWork",
         "name": "Evaluation of TRMM rainfall for soil moisture prediction in a sub tropical climate"
       },
       {
         "@type": "CreativeWork",
         "name": "Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis"
       },
       {
         "@type": "CreativeWork",
         "name": "Mapping spatial distribution of pollutants in groundwater of a tropical area of India using remote sensing and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Modeling mineral phase change chemistry of groundwater in a rural-urban fringe."
       },
       {
         "@type": "CreativeWork",
         "name": "Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network"
       },
       {
         "@type": "CreativeWork",
         "name": "Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective"
       },
       {
         "@type": "CreativeWork",
         "name": "Selection of classification techniques for land use/land cover change investigation"
       },
       {
         "@type": "CreativeWork",
         "name": "Soil chemical changes resulting from irrigating with petrochemical effluents"
       },
       {
         "@type": "CreativeWork",
         "name": "Using S-band dual polarized radar for convective/stratiform rain indexing and the correspondence with AMSR-E GSFC profiling algorithm"
       },
       {
         "@type": "CreativeWork",
         "name": "Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the Lower Tapi Basin"
       },
       {
         "@type": "CreativeWork",
         "name": "Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies"
       },
       {
         "@type": "CreativeWork",
         "name": "Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system"
       },
       {
         "@type": "CreativeWork",
         "name": "Estimation of Evapotranspiration from Wetlands Using Geospatial and Hydrometeorological Data"
       },
       {
         "@type": "CreativeWork",
         "name": "Impact of urbanization on land use/land cover change using remote sensing and GIS: a case study"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India"
       },
       {
         "@type": "CreativeWork",
         "name": "Microbial Activity and Nutrient Status in Oak and Pine Oriented Forest Soil of Mid Altitude Central Himalaya"
       },
       {
         "@type": "CreativeWork",
         "name": "Salt tolerance assessment in alfalfa (Medicago sativa L.) ecotypes."
       },
       {
         "@type": "CreativeWork",
         "name": "Effect of canal on land use/land cover using remote sensing and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Measuring Winter Wheat Cultivar (Triticum aestivum L.) Health Status Using Hyperspectral Reflectance Data."
       },
       {
         "@type": "CreativeWork",
         "name": "Qualitative and quantitative estimation of rare and dominant tree species in an urban diversity setting of Vallabh Vidyanagar campus, Gujarat"
       },
       {
         "@type": "CreativeWork",
         "name": "Water Resource Management in Basaltic Hilly Terrain in Part of Panchmahal, Gujarat, India"
       },
       {
         "@type": "CreativeWork",
         "name": "Appraisal of Some Soil Tests for Zinc Availability to Late-Sown Wheat Grown in Mollisols"
       },
       {
         "@type": "CreativeWork",
         "name": "Groundwater quality assessment and its relation to land use/land cover using remote sensing and GIS"
       },
       {
         "@type": "CreativeWork",
         "name": "Integrated Water Resource Management using Remote Sensing and Geophysical Techniques: Aravali Quartzite, Delhi, India"
       }
     ]
   },
   "identifier": {
     "@type": "PropertyValue",
     "propertyID": "Loop profile",
     "value": "1100151"
   }
 }

}