Item talk:Q142261
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5049173779", "orcid": "https://orcid.org/0000-0002-4155-630X", "display_name": "Prashant K. Srivastava", "display_name_alternatives": [ "Prashant Srivastava", "Prashant Kumar Srivastava", "P. K. Srivastava", "P. Srivastava", "Prashant K. Srivastava", "Prashant Srivastav" ], "works_count": 400, "cited_by_count": 8164, "summary_stats": { "2yr_mean_citedness": 2.3076923076923075, "h_index": 50, "i10_index": 151 }, "ids": { "openalex": "https://openalex.org/A5049173779", "orcid": "https://orcid.org/0000-0002-4155-630X" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I91357014", "ror": "https://ror.org/04cdn2797", "display_name": "Banaras Hindu University", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I91357014" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I4665924", "ror": "https://ror.org/03zdwsf69", "display_name": "University of Rostock", "country_code": "DE", "type": "education", "lineage": [ "https://openalex.org/I4665924" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I56404289", "ror": "https://ror.org/01kh5gc44", "display_name": "Indian Institute of Technology BHU", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I56404289" ] }, "years": [ 2024, 2023, 2022, 2018 ] }, { "institution": { "id": "https://openalex.org/I1292875679", "ror": "https://ror.org/03qn8fb07", "display_name": "Commonwealth Scientific and Industrial Research Organisation", "country_code": "AU", "type": "government", "lineage": [ "https://openalex.org/I1292875679", "https://openalex.org/I2801453606", "https://openalex.org/I4387156119" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I174025329", "ror": "https://ror.org/016gb9e15", "display_name": "University of the Sunshine Coast", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I174025329" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I167751958", "ror": "https://ror.org/00ykac431", "display_name": "Institute of Chemical Technology", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I167751958" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I4210100914", "ror": "https://ror.org/013cf5k59", "display_name": "Ministry of Earth Sciences", "country_code": "IN", "type": "government", "lineage": [ "https://openalex.org/I4210100914" ] }, "years": [ 2022, 2021 ] }, { "institution": { "id": "https://openalex.org/I5847235", "ror": "https://ror.org/04q2jes40", "display_name": "University of Petroleum and Energy Studies", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I5847235" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I1306266525", "ror": "https://ror.org/0171mag52", "display_name": "Goddard Space Flight Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1306266525", "https://openalex.org/I4210124779" ] }, "years": [ 2020, 2019, 2018, 2017, 2016, 2015, 2014 ] }, { "institution": { "id": "https://openalex.org/I4210131147", "ror": "https://ror.org/037skf023", "display_name": "SRM University", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I145286018", "https://openalex.org/I4210131147" ] }, "years": [ 2019 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I56404289", "ror": "https://ror.org/01kh5gc44", "display_name": "Indian Institute of Technology BHU", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I56404289" ] }, { "id": "https://openalex.org/I91357014", "ror": "https://ror.org/04cdn2797", "display_name": "Banaras Hindu University", "country_code": "IN", "type": "education", "lineage": [ "https://openalex.org/I91357014" ] } ], "topics": [ { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "count": 93, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 62, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "count": 58, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 45, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 32, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 31, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 29, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "count": 28, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 26, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 22, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "count": 21, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 20, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 18, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12543", "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques", "count": 16, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 16, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "count": 15, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11404", "display_name": "Deficit Irrigation for Agricultural Water Management", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "count": 11, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 10, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 0.0009069, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "value": 0.0006923, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.0004347, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12543", "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques", "value": 0.0002623, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "value": 0.0002448, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "value": 0.0002385, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14252", "display_name": "Multidisciplinary Research in Science and Technology", "value": 0.0002378, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 0.000177, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "value": 0.0001604, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 0.0001566, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 0.0001522, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "value": 0.000151, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 0.0001396, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0001186, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 0.0001121, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 0.0001105, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 0.0001098, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11404", "display_name": "Deficit Irrigation for Agricultural Water Management", "value": 0.0001079, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "value": 0.0001009, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 9.72e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": 8.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 8.47e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "value": 7.71e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "value": 7.34e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10398", "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "value": 6.32e-05, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 89.0 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 88.0 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 78.5 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 73.0 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 71.0 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 64.8 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 63.5 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 58.3 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 58.3 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 43.0 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 40.8 }, { "id": "https://openalex.org/C146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 35.3 }, { "id": "https://openalex.org/C1276947", "wikidata": "https://www.wikidata.org/wiki/Q333", "display_name": "Astronomy", "level": 1, "score": 34.8 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 33.8 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 32.3 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 32.0 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 29.3 }, { "id": "https://openalex.org/C19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 28.3 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 25.8 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 25.5 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 25.0 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 23.5 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 23.3 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 22.3 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 22.0 } ], "counts_by_year": [ { "year": 2024, "works_count": 33, "cited_by_count": 1332 }, { "year": 2023, "works_count": 36, "cited_by_count": 1548 }, { "year": 2022, "works_count": 52, "cited_by_count": 1934 }, { "year": 2021, "works_count": 52, "cited_by_count": 1754 }, { "year": 2020, "works_count": 36, "cited_by_count": 1098 }, { "year": 2019, "works_count": 29, "cited_by_count": 853 }, { "year": 2018, "works_count": 20, "cited_by_count": 713 }, { "year": 2017, "works_count": 17, "cited_by_count": 576 }, { "year": 2016, "works_count": 29, "cited_by_count": 564 }, { "year": 2015, "works_count": 34, "cited_by_count": 456 }, { "year": 2014, "works_count": 31, "cited_by_count": 244 }, { "year": 2013, "works_count": 16, "cited_by_count": 155 }, { "year": 2012, "works_count": 12, "cited_by_count": 37 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5049173779", "updated_date": "2024-08-26T13:43:59.606398", "created_date": "2023-07-21", "_id": "https://openalex.org/A5049173779" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-4155-630X", "mainEntityOfPage": "https://orcid.org/0000-0002-4155-630X", "givenName": "Prashant K.", "familyName": "Srivastava", "alumniOf": [ { "@type": "Organization", "name": "Jawaharlal Nehru University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "28754" } }, { "@type": "Organization", "name": "University of Bristol", "alternateName": "Department of Civil Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1980" } }, { "@type": "Organization", "name": "Banaras Hindu University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "30114" } } ], "affiliation": [ { "@type": "Organization", "name": "Banaras Hindu University", "alternateName": "IESD", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "30114" } }, { "@type": "Organization", "name": "NASA Jet Propulsion Laboratory", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "53411" } }, { "@type": "Organization", "name": "NASA Goddard Space Flight Center", "alternateName": "Hydrological Sciences Branch", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "53523" } }, { "@type": "Organization", "name": "University of Maryland ", "alternateName": "ESSIC", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "14701" } }, { "@type": "Organization", "name": "University of Bristol", "alternateName": "Civil Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1980" } }, { "@type": "Organization", "name": "Sardar Patel University", "alternateName": "NVPAS", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "29037" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pce.2024.103570", "name": "Appraisal of Visible/IR and microwave datasets for land surface fluxes estimation using machine learning techniques", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pce.2024.103570" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/02626667.2024.2347981", "name": "Hydrological modelling for post-monsoon agricultural drought assessment and implications for the agro-economy", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/02626667.2024.2347981" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-8345", "name": "A machine learning based approach for forecasting remotely sensed vegetation health in Italy.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-8345" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-4608", "name": "Future projection of extreme climate events using various general circulation model scenarios over the Mahi River Basin, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-4608" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/hydrology11020027", "name": "Long-Term Spatiotemporal Investigation of Various Rainfall Intensities over Central India Using EO Datasets", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/hydrology11020027" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-031-51053-3_1", "name": "Concepts of Disasters and Research Themes: Editorial Message", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-031-51053-3_1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-031-51053-3_16", "name": "Geospatial Techniques for Drought Assessment in Semi-arid Region of Central India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-031-51053-3_16" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2023.2280597", "name": "Mapping and monitoring of vegetation regeneration and fuel under major transmission power lines through image and photogrammetric analysis of drone-derived data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2023.2280597" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2023.2247380", "name": "Performance assessment of the Sentinel-2 LAI products and data fusion techniques for developing new LAI datasets over the high-altitude Himalayan forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2023.2247380" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/acffdf", "name": "Understanding the soil water dynamics during excess and deficit rainfall conditions over the core monsoon zone of India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/acffdf" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs15123133", "name": "Evaluating the Performance of PRISMA Shortwave Infrared Imaging Sensor for Mapping Hydrothermally Altered and Weathered Minerals Using the Machine Learning Paradigm", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15123133" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-6098", "name": "Assessment of the impact of soil hydraulic parameters based on various Microwave datasets on estimation of hydrological fluxes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-6098" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11269-022-03372-1", "name": "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11269-022-03372-1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su15075675", "name": "Appraisal of Climate Response to Vegetation Indices over Tropical Climate Region in India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su15075675" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su15054668", "name": "Changes in Extremes Rainfall Events in Present and Future Climate Scenarios over the Teesta River Basin, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su15054668" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi12030105", "name": "Assessment of a Dynamic Physically Based Slope Stability Model to Evaluate Timing and Distribution of Rainfall-Induced Shallow Landslides", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi12030105" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs15030706", "name": "Development of High-Resolution Soil Hydraulic Parameters with Use of Earth Observations for Enhancing Root Zone Soil Moisture Product", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15030706" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su15032147", "name": "Potassium Simulation Using HYDRUS-1D with Satellite-Derived Meteorological Data under Boro Rice Cultivation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su15032147" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3218945", "name": "Passive Only Microwave Soil Moisture Retrieval in Indian Cropping Conditions: Model Parameterization and Validation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3218945" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2022.2071476", "name": "A hyperspectral R based leaf area index estimator: model development and implementation using AVIRIS-NG", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2022.2071476" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2021.1983031", "name": "Development of hyperspectral indices for anti-cancerous Taxol content estimation in the Himalayan region", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2021.1983031" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2022.2138983", "name": "Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2022.2138983" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2022.2036824", "name": "Tree's detection & health's assessment from ultra-high resolution UAV imagery and deep learning", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2022.2036824" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs14235968", "name": "Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs14235968" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/f13121973", "name": "Impact of Environmental Gradients on Phenometrics of Major Forest Types of Kumaon Region of the Western Himalaya", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f13121973" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2021.1933209", "name": "Appraisal of dual polarimetric radar vegetation index in first order microwave scattering algorithm using sentinel \u2013 1A (C - band) and ALOS - 2 (L - band) SAR data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2021.1933209" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2021.1936208", "name": "Rainfall rate estimation over India using global precipitation measurement\u2019s microwave imager datasets and different variants of fuzzy information system", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2021.1936208" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/w14193179", "name": "Improvement of the \u201cTriangle Method\u201d for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w14193179" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs14153560", "name": "Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs14153560" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2020.1870167", "name": "Band selection algorithms for foliar trait retrieval using AVIRIS-NG: a comparison of feature based attribute evaluators", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2020.1870167" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi11050301", "name": "Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi11050301" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-11703", "name": "Soil Surface Moisture retrievals from EO and cosmic ray- based approach for selected sites in the UK", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-11703" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2020.1801862", "name": "Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2020.1801862" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-7726", "name": "Investigating the links between primary metabolites of medicinal species with leaf hyperspectral reflectance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-7726" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-10163", "name": "Utilizing hyperspectral imagery for burnt area mapping in a Greek setting", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-10163" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/s22041354", "name": "Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/s22041354" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.asr.2021.08.022", "name": "Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.asr.2021.08.022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2021.150639", "name": "Model-based ensembles: Lessons learned from retrospective analysis of COVID-19 infection forecasts across 10 countries", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2021.150639" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3144830", "name": "Improving Spatial Representation of Soil Moisture Through the Incorporation of Single-Channel Algorithm With Different Downscaling Approaches", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3144830" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.3034420", "name": "Synergy of Vegetation and Soil Microwave Scattering Model for Leaf Area Index Retrieval Using C-Band Sentinel-1A Satellite Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.3034420" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/f12121726", "name": "Statistical Unfolding Approach to Understand Influencing Factors for Taxol Content Variation in High Altitude Himalayan Region", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f12121726" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2021.1988185", "name": "Exploring the potential of SCAT-SAR SWI for soil moisture retrievals at selected COSMOS-UK sites", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2021.1988185" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jsen.2021.3099937", "name": "Evaluation of Radar/Optical Based Vegetation Descriptors in Water Cloud Model for Soil Moisture Retrieval", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jsen.2021.3099937" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10668-020-01144-8", "name": "Subsurface nutrient modelling using finite element model under Boro rice cropping system", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10668-020-01144-8" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13163284", "name": "Integrating Multi-Sensors Data for Species Distribution Mapping Using Deep Learning and Envelope Models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13163284" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi10080507", "name": "Random Forests with Bagging and Genetic Algorithms Coupled with Least Trimmed Squares Regression for Soil Moisture Deficit Using SMOS Satellite Soil Moisture", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi10080507" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/w13121695", "name": "Long-Term Trend Analysis of Precipitation and Extreme Events over Kosi River Basin in India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w13121695" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2019.1629647", "name": "Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers\u2014a review of the state of the art", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2019.1629647" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su13116019", "name": "SMAP Soil Moisture Product Assessment over Wales, U.K., Using Observations from the WSMN Ground Monitoring Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su13116019" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10668-020-00827-6", "name": "Sensitivity analysis of artificial neural network for chlorophyll prediction using hyperspectral data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10668-020-00827-6" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10668-020-00742-w", "name": "Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10668-020-00742-w" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jsen.2020.3039855", "name": "Denoising AVIRIS-NG Data for Generation of New Chlorophyll Indices", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jsen.2020.3039855" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su13031042", "name": "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su13031042" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi9090530", "name": "An Integrated Spatiotemporal Pattern Analysis Model to Assess and Predict the Degradation of Protected Forest Areas", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi9090530" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/f11070750", "name": "Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f11070750" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/2150704x.2020.1730468", "name": "Evaluating the 2018 extreme flood hazard events in Kerala, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/2150704x.2020.1730468" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10668-019-00353-0", "name": "Mapping and monitoring of the land use/cover changes in the wider area of Itanos, Crete, using very high resolution EO imagery with specific interest in archaeological sites", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10668-019-00353-0" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2019.2927468", "name": "ScatSat-1 Leaf Area Index Product: Models Comparison, Development, and Validation Over Cropland", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2019.2927468" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2018.1520921", "name": "Integrated framework for soil and water conservation in Kosi River Basin", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2018.1520921" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12040597", "name": "Use of Hyperion for Mangrove Forest Carbon Stock Assessment in Bhitarkanika Forest Reserve: A Contribution Towards Blue Carbon Initiative", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12040597" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11069-019-03829-4", "name": "Appraisal of hydro-meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11069-019-03829-4" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/b978-0-08-102894-0.00021-8", "name": "Future perspectives and challenges in hyperspectral remote sensing", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/b978-0-08-102894-0.00021-8" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/access.2020.3029614", "name": "Short-Term Statistical Forecasts of COVID-19 Infections in India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/access.2020.3029614" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10661-019-7730-7", "name": "Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10661-019-7730-7" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/resources8020070", "name": "GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/resources8020070" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11050579", "name": "Operational Soil Moisture from ASCAT in Support of Water Resources Management", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11050579" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/s19040762", "name": "Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/s19040762" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11040439", "name": "Integration of Microwave and Optical/Infrared Derived Datasets for a Drought Hazard Inventory in a Sub-Tropical Region of India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11040439" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi7080326", "name": "Identification of Painted Rock-Shelter Sites Using GIS Integrated with a Decision Support System and Fuzzy Logic", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi7080326" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049.2016.1265594", "name": "Delineation and classification of rural\u2013urban fringe using geospatial technique and onboard DMSP\u2013Operational Linescan System", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049.2016.1265594" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/w10040381", "name": "Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w10040381" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su10010181", "name": "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su10010181" } }, { "@type": "CreativeWork", "name": "Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions" }, { "@type": "CreativeWork", "name": "Content-Based Image Retrieval Using Multiscale Local Spatial Binary Gaussian Co-occurrence Pattern" }, { "@type": "CreativeWork", "name": "Delineation and classification of rural--urban fringe using geospatial technique and onboard DMSP--Operational Linescan System" }, { "@type": "CreativeWork", "name": "Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management" }, { "@type": "CreativeWork", "name": "Evaluation of satellite precipitation products for extreme flood events: case study in Peninsular Malaysia" }, { "@type": "CreativeWork", "name": "INTEGRATION OF SATELLITE, GLOBAL REANALYSIS DATA AND MACROSCALE HYDROLOGICAL MODEL FOR DROUGHT ASSESSMENT IN SUB-TROPICAL REGION OF INDIA." }, { "@type": "CreativeWork", "name": "Multi-temporal NDVI and surface temperature analysis for Urban Heat Island inbuilt surrounding of sub-humid region: A case study of two geographical regions" }, { "@type": "CreativeWork", "name": "Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS\u00ae" }, { "@type": "CreativeWork", "name": "Remote sensing of aerosols from space: retrieval of properties and applications" }, { "@type": "CreativeWork", "name": "Role of parameterized convection scheme in Regional Climate Model to simulate Indian summer monsoon rainfall" }, { "@type": "CreativeWork", "name": "Soil erosion assessment on hillslope of GCE using RUSLE model" }, { "@type": "CreativeWork", "name": "Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment" }, { "@type": "CreativeWork", "name": "Vegetation water content retrieval using scatterometer data at X-band" }, { "@type": "CreativeWork", "name": "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5" }, { "@type": "CreativeWork", "name": "Content-Based Image Retrieval using Local Binary Curvelet Co-occurrence Pattern\u2014A Multiresolution Technique" }, { "@type": "CreativeWork", "name": "Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information" }, { "@type": "CreativeWork", "name": "Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling-A case study of Surat City, Lower Tapi Basin, India" }, { "@type": "CreativeWork", "name": "Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi" }, { "@type": "CreativeWork", "name": "Groundwater assessment in a canal command area for sustainable irrigation in a part of the Indo-Gangetic alluvial plain." }, { "@type": "CreativeWork", "name": "Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information" }, { "@type": "CreativeWork", "name": "Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India" }, { "@type": "CreativeWork", "name": "Monitoring Changes in Urban Cover Using Landsat Satellite Images and Demographical Information" }, { "@type": "CreativeWork", "name": "Overview of Sensitivity Analysis Methods in Earth Observation Modeling" }, { "@type": "CreativeWork", "name": "Quantitative Analysis of Transient Intertidal Submarine Groundwater Discharge in Coastal Aquifer of Western Japan" }, { "@type": "CreativeWork", "name": "Radar Rainfall Sensitivity Analysis Using Multivariate Distributed Ensemble Generator" }, { "@type": "CreativeWork", "name": "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation" }, { "@type": "CreativeWork", "name": "SWAT Model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm" }, { "@type": "CreativeWork", "name": "Satellite soil moisture: Review of theory and applications in water resources" }, { "@type": "CreativeWork", "name": "Sensitivity of Wells in a Large Groundwater Monitoring Network and Its Evaluation Using GRACE Satellite Derived Information" }, { "@type": "CreativeWork", "name": "Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: impacts of seasonality and precursor gases" }, { "@type": "CreativeWork", "name": "WRF-PDM: Prognostic approach for discharge prediction in ungauged catchment" }, { "@type": "CreativeWork", "name": "Why WRF-PDM?" }, { "@type": "CreativeWork", "name": "A Geographic Information System (GIS) Based Assessment of Hydropower Potential within the Upper Indus Basin Pakistan" }, { "@type": "CreativeWork", "name": "A statistical significance of differences in classification accuracy of crop types using different classification algorithms" }, { "@type": "CreativeWork", "name": "Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation" }, { "@type": "CreativeWork", "name": "Book Review - Biophysical Applications of Satellite Remote Sensing" }, { "@type": "CreativeWork", "name": "Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation" }, { "@type": "CreativeWork", "name": "Content-based image retrieval using scale invariant feature transform and moments" }, { "@type": "CreativeWork", "name": "Delineation and Zonation of Flood Prone Area Using Geo-hydrological Parameters: A Case Study of Lower Ghaghara River Valley" }, { "@type": "CreativeWork", "name": "Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA from TOPEX and Jason satellite radar altimeter data" }, { "@type": "CreativeWork", "name": "GIS Supported Water Use Master Plan: A Planning Tool for Integrated Water Resources Management in Nepal" }, { "@type": "CreativeWork", "name": "GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India" }, { "@type": "CreativeWork", "name": "Geospatial Technology for Water Resource Applications" }, { "@type": "CreativeWork", "name": "Geospatial Technology for Water Resource Development in WGKKC2 Watershed" }, { "@type": "CreativeWork", "name": "High-resolution WRF simulation of cloud properties over the super typhoon Haiyan: physics parameterizations and comparison against MODIS" }, { "@type": "CreativeWork", "name": "Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization" }, { "@type": "CreativeWork", "name": "Integrative Use of Near-Surface Satellite Soil Moisture and Precipitation for Estimation of Improved Irrigation Scheduling Parameters" }, { "@type": "CreativeWork", "name": "Introduction to Geospatial Technology for Water Resources" }, { "@type": "CreativeWork", "name": "Land use/land cover classification using Sentinel-1 imagery and Support Vector Machines" }, { "@type": "CreativeWork", "name": "Landscape transform and spatial metrics for mapping spatio-temporal land cover dynamics using Earth Observation datasets" }, { "@type": "CreativeWork", "name": "Nonparametric Model for the Retrieval of Soil Moisture by Microwave Remote Sensing" }, { "@type": "CreativeWork", "name": "Operational evapotranspiration estimates from SEVIRI in support of sustainable water management" }, { "@type": "CreativeWork", "name": "Precipitation trend analysis of Sindh River basin, India, from 102-year record (1901--2002)" }, { "@type": "CreativeWork", "name": "Reduced major axis approach for correcting GPM/GMI radiometric biases to coincide with radiative transfer simulation" }, { "@type": "CreativeWork", "name": "Satellite Soil Moisture Retrieval: Techniques and Applications" }, { "@type": "CreativeWork", "name": "Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts" }, { "@type": "CreativeWork", "name": "Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets" }, { "@type": "CreativeWork", "name": "Sensitivity Analysis in Earth Observation Modelling" }, { "@type": "CreativeWork", "name": "Soil Moisture from Space: Techniques and Limitations" }, { "@type": "CreativeWork", "name": "Soil moisture deficit estimation through SMOS soil moisture and MODIS land surface temperature" }, { "@type": "CreativeWork", "name": "Soil moisture retrievals using optical/TIR methods" }, { "@type": "CreativeWork", "name": "Spatial Integration of Rice-based Cropping Systems for Soil and Water Quality Assessment Using Geospatial Tools and Techniques" }, { "@type": "CreativeWork", "name": "Spatiotemporal Estimates of Surface Soil Moisture from Space Using the T s/VI Feature Space" }, { "@type": "CreativeWork", "name": "Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya" }, { "@type": "CreativeWork", "name": "Uncertainty Quantification in the Infrared Surface Emissivity Model (ISEM)" }, { "@type": "CreativeWork", "name": "Use of satellite soil moisture products for the operational mitigation of landslides risk in central Italy" }, { "@type": "CreativeWork", "name": "Zhuo, L.(2016). Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts. Natural Hazards, 82 (2), 845-855. DOI" }, { "@type": "CreativeWork", "name": "An introduction to factor analysis for radio frequency interference detection on satellite observations" }, { "@type": "CreativeWork", "name": "Appraisal of NLDAS-2 multi-model simulated soil moistures for hydrological modelling" }, { "@type": "CreativeWork", "name": "Appraisal of Weather Research and Forecasting Model Downscaling of Hydro-meteorological Variables and their Applicability for Discharge Prediction: Prognostic Approach for Ungauged Basin" }, { "@type": "CreativeWork", "name": "Artificial neural network with different learning parameters for crop classification using multispectral datasets" }, { "@type": "CreativeWork", "name": "Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, western coast of India: a synergistic evaluation using remote sensing" }, { "@type": "CreativeWork", "name": "Assessing the influence of atmospheric and topographic correction and inclusion of SWIR bands in burned scars detection from high-resolution EO imagery: a case study using ASTER" }, { "@type": "CreativeWork", "name": "Crop variables estimation by adaptive neuro-fuzzy inference system using bistatic scatterometer data" }, { "@type": "CreativeWork", "name": "Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat" }, { "@type": "CreativeWork", "name": "Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator" }, { "@type": "CreativeWork", "name": "Evaluation of the soil moisture operational estimates from SMOS in Europe: results over diverse ecosystems" }, { "@type": "CreativeWork", "name": "Geochemical modeling to evaluate the mangrove forest water" }, { "@type": "CreativeWork", "name": "Impact of complexity of radar rainfall uncertainty model on flow simulation" }, { "@type": "CreativeWork", "name": "Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India" }, { "@type": "CreativeWork", "name": "Integration Of TRMM Rainfall In Numerical Model For Pesticide Prediction In Subtropical Climate" }, { "@type": "CreativeWork", "name": "Performance Assessment of the SEVIRI Evapotranspiration Operational Product: Results Over Diverse Mediterranean Ecosystems" }, { "@type": "CreativeWork", "name": "Performance Evaluation Of SMOS Soil Moisture Retrieval Parameters For Hydrological Application" }, { "@type": "CreativeWork", "name": "Performance evaluation of WRF-Noah Land surface model estimated soil moisture for hydrological application: Synergistic evaluation using SMOS retrieved soil moisture" }, { "@type": "CreativeWork", "name": "Performance of MODIS satellite and mesoscale model based land surface temperature for soil moisture deficit estimation using Neural Network" }, { "@type": "CreativeWork", "name": "Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information" }, { "@type": "CreativeWork", "name": "Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: evidence towards its use as a tool to study Earth's system interactions" }, { "@type": "CreativeWork", "name": "Rain rate retrieval algorithm for conical-scanning microwave imagers aided by random forest, RReliefF, and multivariate adaptive regression splines (RAMARS)" }, { "@type": "CreativeWork", "name": "Roughness parameter optimization using Land Parameter Retrieval Model and Soil Moisture Deficit: Implementation using SMOS brightness temperatures" }, { "@type": "CreativeWork", "name": "SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting" }, { "@type": "CreativeWork", "name": "Seasonal ensemble generator for radar rainfall using copula and autoregressive model" }, { "@type": "CreativeWork", "name": "Soil characterization based on land cover heterogeneity over a tropical landscape: an integrated approach using earth observation data-sets" }, { "@type": "CreativeWork", "name": "Special Issue on\" Emerging science and applications with microwave remote sensing data\"" }, { "@type": "CreativeWork", "name": "Stratiform/convective rain delineation for TRMM microwave imager" }, { "@type": "CreativeWork", "name": "Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band" }, { "@type": "CreativeWork", "name": "Support vector regression for retrieval of soil moisture using bistatic scatterometer data at X-band" }, { "@type": "CreativeWork", "name": "Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations" }, { "@type": "CreativeWork", "name": "Towards Improving our Understanding on the Retrievals of Key Bio-physical Parameters from Space: the work done within the PREMIER-EO Project" }, { "@type": "CreativeWork", "name": "Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project" }, { "@type": "CreativeWork", "name": "Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece" }, { "@type": "CreativeWork", "name": "Validating a 1-D SVAT model" }, { "@type": "CreativeWork", "name": "Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2" }, { "@type": "CreativeWork", "name": "WRF dynamical downscaling and bias correction schemes for NCEP estimated hydro-meteorological variables" }, { "@type": "CreativeWork", "name": "Yahia Abbi Said, George P. Petropoulos" }, { "@type": "CreativeWork", "name": "An appraisal of the accuracy of operational soil moisture estimates from SMOS MIRAS using validated in situ observations acquired in a Mediterranean environment" }, { "@type": "CreativeWork", "name": "An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR" }, { "@type": "CreativeWork", "name": "Application of geo-spatial technique for flood inundation mapping of low lying areas" }, { "@type": "CreativeWork", "name": "Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine" }, { "@type": "CreativeWork", "name": "Assessment of SMOS soil moisture retrieval parameters using tau-omega algorithms for soil moisture deficit estimation" }, { "@type": "CreativeWork", "name": "CLOUDET: A Cloud Detection and Estimation Algorithm for Passive Microwave Imagers and Sounders Aided by Na\u0308\u0131ve Bayes Classifier and Multilayer Perceptron" }, { "@type": "CreativeWork", "name": "Chlorophyll retrieval using ground based hyperspectral data from a tropical area of india using regression algorithms" }, { "@type": "CreativeWork", "name": "Computational Intelligence Techniques in Earth and Environmental Sciences" }, { "@type": "CreativeWork", "name": "Content-based image retrieval using moments of wavelet transform" }, { "@type": "CreativeWork", "name": "Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product" }, { "@type": "CreativeWork", "name": "Evaluation of Dielectric Mixing Models for Passive Microwave Soil Moisture Retrieval Using Data From ComRAD Ground-Based SMAP Simulator" }, { "@type": "CreativeWork", "name": "Exploring the Influence of Topographic Correction and SWIR Spectral Information Inclusion on Burnt Scars Detection From High Resolution EO Imagery: A Case Study Using ASTER imagery" }, { "@type": "CreativeWork", "name": "Ice cloud detection from AMSU-A, MHS, and HIRS satellite instruments inferred by cloud profiling radar" }, { "@type": "CreativeWork", "name": "Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, India" }, { "@type": "CreativeWork", "name": "Morphometric Analysis of Upper Tons Basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS" }, { "@type": "CreativeWork", "name": "Multivariate Distributed Ensemble Generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate" }, { "@type": "CreativeWork", "name": "Non-parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19--85 GHz channels with the Random Forests algorithm" }, { "@type": "CreativeWork", "name": "Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes" }, { "@type": "CreativeWork", "name": "Remote Sensing Applications in Environmental Research" }, { "@type": "CreativeWork", "name": "Remote sensing based identification of painted rock shelter sites: appraisal using advanced wide field sensor, neural network and field observations" }, { "@type": "CreativeWork", "name": "Seasonal parameterizations of the tau-omega model using the ComRAD ground-based SMAP simulator" }, { "@type": "CreativeWork", "name": "Sensitivity and uncertainty analysis of estimated soil hydraulic parameters for simulating soil water content" }, { "@type": "CreativeWork", "name": "Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction" }, { "@type": "CreativeWork", "name": "Sensitivity associated with bright band/melting layer location on radar reflectivity correction for attenuation at C-band using differential propagation phase measurements" }, { "@type": "CreativeWork", "name": "Sensitivity exploration of SimSphere land surface model towards its use for operational products development from Earth observation data" }, { "@type": "CreativeWork", "name": "The development of numerical weather models-a review" }, { "@type": "CreativeWork", "name": "Towards the Evaluation of the SEVIRI Evapotranspiration Operational Product Accuracy on a Continental scale: Findings Over Diverse European ecosystems" }, { "@type": "CreativeWork", "name": "Tracking a tropical cyclone through WRF--ARW simulation and sensitivity of model physics" }, { "@type": "CreativeWork", "name": "Validating Operational Evapotranspiration Estimates from Geostationary Orbit Data: Results over European Ecosystems" }, { "@type": "CreativeWork", "name": "Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate" }, { "@type": "CreativeWork", "name": "Artificial Intelligence Techniques for Downscaling SMOS Soil Moisture using MODIS Land Surface Temperature" }, { "@type": "CreativeWork", "name": "Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model" }, { "@type": "CreativeWork", "name": "Content-based image retrieval using moments" }, { "@type": "CreativeWork", "name": "Data fusion techniques for an improved soil moisture retrieval using SMOS and WRF-NOAH Land surface model" }, { "@type": "CreativeWork", "name": "Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model" }, { "@type": "CreativeWork", "name": "Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate" }, { "@type": "CreativeWork", "name": "Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme" }, { "@type": "CreativeWork", "name": "Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS" }, { "@type": "CreativeWork", "name": "Heavy metals pollution in soil-water-vegetation continuum irrigated with ground water and untreated sewage" }, { "@type": "CreativeWork", "name": "Integrated assessment of groundwater influenced by a confluence river system: concurrence with remote sensing and geochemical modelling" }, { "@type": "CreativeWork", "name": "Land degradation severity assessment with sand encroachment in an ecologically fragile arid environment: a geospatial perspective" }, { "@type": "CreativeWork", "name": "Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application" }, { "@type": "CreativeWork", "name": "Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS" }, { "@type": "CreativeWork", "name": "Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing" }, { "@type": "CreativeWork", "name": "Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications" }, { "@type": "CreativeWork", "name": "A Joss--Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges" }, { "@type": "CreativeWork", "name": "A Study on Distribution of Heavy Metal Contamination in the Vegetables using GIS and analytical technique" }, { "@type": "CreativeWork", "name": "Artificial intelligence techniques for clutter identification with polarimetric radar signatures" }, { "@type": "CreativeWork", "name": "Assessment of SMOS satellite derived soil moisture for soil moisture deficit estimation." }, { "@type": "CreativeWork", "name": "Assessment of TRMM rainfall for vertical soil moisture prediction: Implication through HYDRUS 1D." }, { "@type": "CreativeWork", "name": "Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey" }, { "@type": "CreativeWork", "name": "Ensembe of bagged decision trees to discriminate rain/no rain status from the TRMM Microwave Imager." }, { "@type": "CreativeWork", "name": "Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach" }, { "@type": "CreativeWork", "name": "Evaluation of TRMM rainfall for soil moisture prediction in a sub tropical climate" }, { "@type": "CreativeWork", "name": "Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations" }, { "@type": "CreativeWork", "name": "Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis" }, { "@type": "CreativeWork", "name": "Mapping spatial distribution of pollutants in groundwater of a tropical area of India using remote sensing and GIS" }, { "@type": "CreativeWork", "name": "Modeling mineral phase change chemistry of groundwater in a rural-urban fringe." }, { "@type": "CreativeWork", "name": "Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network" }, { "@type": "CreativeWork", "name": "Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective" }, { "@type": "CreativeWork", "name": "Selection of classification techniques for land use/land cover change investigation" }, { "@type": "CreativeWork", "name": "Soil chemical changes resulting from irrigating with petrochemical effluents" }, { "@type": "CreativeWork", "name": "Using S-band dual polarized radar for convective/stratiform rain indexing and the correspondence with AMSR-E GSFC profiling algorithm" }, { "@type": "CreativeWork", "name": "Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the Lower Tapi Basin" }, { "@type": "CreativeWork", "name": "Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies" }, { "@type": "CreativeWork", "name": "Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system" }, { "@type": "CreativeWork", "name": "Estimation of Evapotranspiration from Wetlands Using Geospatial and Hydrometeorological Data" }, { "@type": "CreativeWork", "name": "Impact of urbanization on land use/land cover change using remote sensing and GIS: a case study" }, { "@type": "CreativeWork", "name": "Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India" }, { "@type": "CreativeWork", "name": "Microbial Activity and Nutrient Status in Oak and Pine Oriented Forest Soil of Mid Altitude Central Himalaya" }, { "@type": "CreativeWork", "name": "Salt tolerance assessment in alfalfa (Medicago sativa L.) ecotypes." }, { "@type": "CreativeWork", "name": "Effect of canal on land use/land cover using remote sensing and GIS" }, { "@type": "CreativeWork", "name": "Measuring Winter Wheat Cultivar (Triticum aestivum L.) Health Status Using Hyperspectral Reflectance Data." }, { "@type": "CreativeWork", "name": "Qualitative and quantitative estimation of rare and dominant tree species in an urban diversity setting of Vallabh Vidyanagar campus, Gujarat" }, { "@type": "CreativeWork", "name": "Water Resource Management in Basaltic Hilly Terrain in Part of Panchmahal, Gujarat, India" }, { "@type": "CreativeWork", "name": "Appraisal of Some Soil Tests for Zinc Availability to Late-Sown Wheat Grown in Mollisols" }, { "@type": "CreativeWork", "name": "Groundwater quality assessment and its relation to land use/land cover using remote sensing and GIS" }, { "@type": "CreativeWork", "name": "Integrated Water Resource Management using Remote Sensing and Geophysical Techniques: Aravali Quartzite, Delhi, India" } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "1100151" } }
}