Item talk:Q142214
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5012801147", "orcid": "https://orcid.org/0000-0002-5493-5878", "display_name": "J. S. Kimball", "display_name_alternatives": [ "J. Kimball", "John S. Kimbal", "John Kimball", "John S. Kimball", "J. S. Kimball", "John Seele Kimball" ], "works_count": 622, "cited_by_count": 25485, "summary_stats": { "2yr_mean_citedness": 5.7592592592592595, "h_index": 75, "i10_index": 218 }, "ids": { "openalex": "https://openalex.org/A5012801147", "orcid": "https://orcid.org/0000-0002-5493-5878" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I6750721", "ror": "https://ror.org/0078xmk34", "display_name": "University of Montana", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I6750721" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I1280640908", "ror": "https://ror.org/0563w1497", "display_name": "The Nature Conservancy", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I1280640908" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I1306266525", "ror": "https://ror.org/0171mag52", "display_name": "Goddard Space Flight Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1306266525", "https://openalex.org/I4210124779" ] }, "years": [ 2023, 2005 ] }, { "institution": { "id": "https://openalex.org/I116953780", "ror": "https://ror.org/03rc6as71", "display_name": "Tongji University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I116953780" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I53012624", "ror": "https://ror.org/03ww55028", "display_name": "Joint BioEnergy Institute", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I53012624" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I148283060", "ror": "https://ror.org/02jbv0t02", "display_name": "Lawrence Berkeley National Laboratory", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I148283060", "https://openalex.org/I39565521" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I201448701", "ror": "https://ror.org/00cvxb145", "display_name": "University of Washington", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I201448701" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I201726411", "ror": "https://ror.org/01km6p862", "display_name": "United Arab Emirates University", "country_code": "AE", "type": "education", "lineage": [ "https://openalex.org/I201726411" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I193198326", "ror": "https://ror.org/01tj58m37", "display_name": "Montana State University Billings", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I193198326", "https://openalex.org/I4210126032" ] }, "years": [ 2018 ] }, { "institution": { "id": "https://openalex.org/I4210088002", "ror": "https://ror.org/008bf8b33", "display_name": "Flathead High School", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I4210088002" ] }, "years": [ 2010, 2009 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I6750721", "ror": "https://ror.org/0078xmk34", "display_name": "University of Montana", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I6750721" ] } ], "topics": [ { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 214, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 192, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "count": 155, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 94, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 73, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 72, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 50, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 48, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 46, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "count": 38, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11405", "display_name": "Global Sea Level Variability and Change", "count": 27, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 25, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "count": 23, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 22, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 20, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 18, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 16, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10302", "display_name": "Importance and Conservation of Freshwater Biodiversity", "count": 13, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 0.0015115, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.001269, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 0.0007528, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.0005118, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0004682, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11234", "display_name": "Satellite-Based Precipitation Estimation and Validation", "value": 0.0004536, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 0.0003315, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 0.0002458, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0002114, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0002069, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 0.0001726, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 0.0001427, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 9.95e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "value": 9.92e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 9.77e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 9.72e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "value": 9.24e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 9.05e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "value": 8.04e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "value": 7.66e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 7.64e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "value": 7.54e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "value": 7.2e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12633", "display_name": "Global Governance and International Law", "value": 7.02e-05, "subfield": { "id": "https://openalex.org/subfields/3320", "display_name": "Political Science and International Relations" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 6.98e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 90.7 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 90.5 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 89.4 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 81.8 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 73.2 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 69.5 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 66.7 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 52.9 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 52.7 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 46.8 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 46.3 }, { "id": "https://openalex.org/C1276947", "wikidata": "https://www.wikidata.org/wiki/Q333", "display_name": "Astronomy", "level": 1, "score": 42.9 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 40.8 }, { "id": "https://openalex.org/C146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 38.7 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 36.5 }, { "id": "https://openalex.org/C19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 34.1 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 29.6 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 29.3 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 26.4 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 25.4 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 24.8 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 24.8 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 22.2 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 22.0 }, { "id": "https://openalex.org/C76155785", "wikidata": "https://www.wikidata.org/wiki/Q418", "display_name": "Telecommunications", "level": 1, "score": 21.5 } ], "counts_by_year": [ { "year": 2024, "works_count": 12, "cited_by_count": 1763 }, { "year": 2023, "works_count": 28, "cited_by_count": 2991 }, { "year": 2022, "works_count": 24, "cited_by_count": 3328 }, { "year": 2021, "works_count": 30, "cited_by_count": 3367 }, { "year": 2020, "works_count": 46, "cited_by_count": 2847 }, { "year": 2019, "works_count": 35, "cited_by_count": 2493 }, { "year": 2018, "works_count": 36, "cited_by_count": 2206 }, { "year": 2017, "works_count": 37, "cited_by_count": 2118 }, { "year": 2016, "works_count": 37, "cited_by_count": 2013 }, { "year": 2015, "works_count": 42, "cited_by_count": 1732 }, { "year": 2014, "works_count": 47, "cited_by_count": 1379 }, { "year": 2013, "works_count": 21, "cited_by_count": 1324 }, { "year": 2012, "works_count": 31, "cited_by_count": 1144 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5012801147", "updated_date": "2024-08-19T18:39:12.774747", "created_date": "2023-07-21", "_id": "https://openalex.org/A5012801147" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-5493-5878", "mainEntityOfPage": "https://orcid.org/0000-0002-5493-5878", "givenName": "John S.", "familyName": "Kimball", "alumniOf": { "@type": "Organization", "name": "Oregon State University", "alternateName": "Bioresource Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2694" } }, "affiliation": { "@type": "Organization", "name": "University of Montana", "alternateName": "Ecosystem and Conservation Sciences", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "307078" } }, "@reverse": { "creator": [ { "@type": "CreativeWork", "name": "Characterizing the impact of climatic and price anomalies on agrosystems in the northwest United States", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind606716919" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023jg007977", "name": "Diagnosing Spring Onset Across the North American Arctic\u2010Boreal Region Using Complementary Satellite Environmental Data Records", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023jg007977" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/essoar.171269303.34921116/v1", "name": "Coupling Remote Sensing with a Process Model for the Simulation of Rangeland Carbon Dynamics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.171269303.34921116/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2023.12.10.571036", "name": "Beneficial \u2018inefficiencies\u2019 of western ranching: Flood-irrigated hay production sustains wetland systems by mimicking historic hydrologic processes", "identifier": [ { "@type": "PropertyValue", "propertyID": "ppr", "value": "ppr772449" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2023.12.10.571036" } ], "sameAs": "https://europepmc.org/article/PPR/ppr772449" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fdata.2023.1243559", "name": "Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178957266" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fdata.2023.1243559" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "10690831" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "38045095" } ], "sameAs": [ "https://europepmc.org/article/pmc/10690831", "https://pubmed.ncbi.nlm.nih.gov/38045095" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023jg007457", "name": "Continuity of Global MODIS Terrestrial Primary Productivity Estimates in the VIIRS Era Using Model\u2010Data Fusion", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85172673645" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023jg007457" } ] }, { "@type": "CreativeWork", "name": "Spatial and temporal differences in surface and subsurface meltwater distribution over Greenland ice sheet using multi-frequency passive microwave observations", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind608081732" } }, { "@type": "CreativeWork", "name": "Carbon uptake in Eurasian boreal forests dominates the high\u2010latitude net ecosystem carbon budget", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607968643" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/essoar.167768101.16068273/v1", "name": "Continuity of global MODIS terrestrial primary productivity estimates in the VIIRS era using model-data fusion", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.167768101.16068273/v1" } }, { "@type": "CreativeWork", "name": "Pan\u2010Arctic soil moisture control on tundra carbon sequestration and plant productivity", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607968611" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/t4d3a-af198", "name": "Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/t4d3a-af198" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/adkwf-mp029", "name": "Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/adkwf-mp029" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16553", "name": "Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85146310183" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16553" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "36647630" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/36647630" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022ea002630", "name": "Intensified Warming and Aridity Accelerate Terminal Lake Desiccation in the Great Basin of the Western United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022ea002630" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85147144142" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2023.3278686", "name": "Assessment of Surface Fractional Water Impacts on SMAP Soil Moisture Retrieval", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2023.3278686" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85161066674" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss52108.2023.10283003", "name": "Deep Learning Estimation of Northern Hemisphere Soil Freeze/Thaw Dynamics Using Smap and Amsr2 Brightness Temperatures", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178343422" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss52108.2023.10283003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2023.113803", "name": "Global estimates of daily evapotranspiration using SMAP surface and root-zone soil moisture", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85171482311" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2023.113803" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-23-0063.1", "name": "IMERG Precipitation Improves the SMAP Level-4 Soil Moisture Product", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-23-0063.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85175008443" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/acceb8", "name": "Influence of seasonal climatic water deficit and crop prices on rainfed crop grain harvest, repurposing, and abandonment in the western U.S.A.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/acceb8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85159229537" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2023.3236117", "name": "Mapping Surface Organic Soil Properties in Arctic Tundra Using C-Band SAR Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85147313389" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2023.3236117" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2022.113390", "name": "Reliability of using vegetation optical depth for estimating decadal and interannual carbon dynamics", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2022.113390" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85145584793" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss52108.2023.10282046", "name": "Retrieving Soil Organic Matter and Soil Moisture Profiles of the Arctic Foothills Tundra Using P-band Polarimetric SAR Imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss52108.2023.10282046" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178336923" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2139/ssrn.4617584", "name": "Soil Freeze/Thaw Dynamics Strongly Influences Runoff Regime in a Tibetan Permafrost Watershed: Insights from a Process-Based Model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2139/ssrn.4617584" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85175601835" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2023.113705", "name": "Spatial and temporal differences in surface and subsurface meltwater distribution over Greenland ice sheet using multi-frequency passive microwave observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85164223930" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2023.113705" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss52108.2023.10282142", "name": "The Potential of Low-Frequency Polarimetric SAR Data for Soil Carbon Content Retrieval in the Arctic", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178377403" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss52108.2023.10282142" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-022-01584-2", "name": "Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85146588471" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-022-01584-2" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr031709", "name": "A Coupled River Basin\u2010Urban Hydrological Model (DRIVE\u2010Urban) for Real\u2010Time Urban Flood Modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr031709" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85143141258" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16487", "name": "Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmc", "value": "10099953" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16487" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "36353841" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85141861610" } ], "sameAs": [ "https://europepmc.org/article/pmc/10099953", "https://pubmed.ncbi.nlm.nih.gov/36353841" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2022.113199", "name": "Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85135696092" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2022.113199" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607873215" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-022-33293-x", "name": "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-022-33293-x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85138621977" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs14153812", "name": "Local Scale (3-m) Soil Moisture Mapping Using SMAP and Planet SuperDove", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs14153812" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85137116176" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021ef002530", "name": "Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85135090104" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ef002530" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16214", "name": "Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16214" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "9545136" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "35452156" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85129776966" } ], "sameAs": [ "https://europepmc.org/article/pmc/9545136", "https://pubmed.ncbi.nlm.nih.gov/35452156" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/brv.12859", "name": "A framework to integrate innovations in invasion science for proactive management.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/brv.12859" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "35451197" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85128578956" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/35451197" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr030957", "name": "Potential Satellite Monitoring of Surface Organic Soil Properties in Arctic Tundra From SMAP", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85130998870" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr030957" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-022-07561-1", "name": "Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmc", "value": "8938415" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "35314726" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126857135" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-022-07561-1" } ], "sameAs": [ "https://europepmc.org/article/pmc/8938415", "https://pubmed.ncbi.nlm.nih.gov/35314726" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gl096599", "name": "Ice Sheet Surface and Subsurface Melt Water Discrimination Using Multi\u2010Frequency Microwave Radiometry", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gl096599" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125769732" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021ms002804", "name": "Soil Respiration Phenology Improves Modeled Phase of Terrestrial net Ecosystem Exchange in Northern Hemisphere", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125152646" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ms002804" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2022.153316", "name": "Evaluation of trophic state for inland waters through combining Forel-Ule Index and inherent optical properties.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "35066030" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2022.153316" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85123593519" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/35066030" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2022.3147430", "name": "A Novel Approach to Map the Intensity of Surface Melting on the Antarctica Ice Sheet Using SMAP L-Band Microwave Radiometry", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85124177472" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2022.3147430" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ejrh.2022.101127", "name": "A hydro-economic analysis of end-of-century climate projections on agricultural land and water use, production, and revenues in the U.S. Northern Rockies and Great Plains", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ejrh.2022.101127" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85134066778" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ac4e37", "name": "A model to characterize soil moisture and organic matter profiles in the permafrost active layer in support of radar remote sensing in Alaskan Arctic tundra", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ac4e37" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125478894" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss46834.2022.9883357", "name": "Active Layer Thickness Throughout Northern Alaska by Upscaling from P-Band Polarimetric Sar Retrievals", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85140371282" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss46834.2022.9883357" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss46834.2022.9883948", "name": "Detecting the Greenland Ice Sheet Strong Surface Melt During Summer 2021 using SMAP L-Band Microwave Radiometry", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss46834.2022.9883948" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85140382714" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss46834.2022.9883717", "name": "Ice Sheet Melt Water Profile Mapping Using Multi-Frequency Microwave Radiometry", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss46834.2022.9883717" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85140406254" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss46834.2022.9883311", "name": "Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85140383256" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss46834.2022.9883311" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3174807", "name": "Satellite Retrievals of Probabilistic Freeze-Thaw Conditions from SMAP and AMSR Brightness Temperatures", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85131621464" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3174807" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3125715", "name": "Sensitivity of Multifrequency Polarimetric SAR Data to Postfire Permafrost Changes and Recovery Processes in Arctic Tundra", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125462597" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3125715" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2021.3124743", "name": "Validation of Soil Moisture Data Products from the NASA SMAP Mission", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2021.3124743" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118667453" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fdata.2021.773478", "name": "DroughtCast: A Machine Learning Forecast of the United States Drought Monitor.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fdata.2021.773478" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "34993467" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "8725730" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85122247766" } ], "sameAs": [ "https://pubmed.ncbi.nlm.nih.gov/34993467", "https://europepmc.org/article/pmc/8725730" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.21203/rs.3.rs-959226/v1", "name": "Earlier Snowmelt May Lead to Late Season Declines in Plant Productivity and Carbon Sequestration in Arctic Tundra Ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85168036356" }, { "@type": "PropertyValue", "propertyID": "ppr", "value": "ppr408891" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.21203/rs.3.rs-959226/v1" } ], "sameAs": "https://europepmc.org/article/PPR/ppr408891" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fdata.2021.734990", "name": "Testing a Generalizable Machine Learning Workflow for Aquatic Invasive Species on Rainbow Trout (Oncorhynchus mykiss) in Northwest Montana.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fdata.2021.734990" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "8558495" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "34734177" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118408448" } ], "sameAs": [ "https://europepmc.org/article/pmc/8558495", "https://pubmed.ncbi.nlm.nih.gov/34734177" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10507940.1", "name": "Soil respiration phenology improves modeled phase of terrestrial net ecosystem exchange in northern hemisphere", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10507940.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13122284", "name": "Snow Phenology and Hydrologic Timing in the Yukon River Basin, AK, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13122284" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108662121" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg005912", "name": "Divergent Response of Vegetation Growth to Soil Water Availability in Dry and Wet Periods Over Central Asia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg005912" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108621923" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2021.3092340", "name": "Satellite Flood Inundation Assessment and Forecast Using SMAP and Landsat.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmc", "value": "8312582" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "34316323" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2021.3092340" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85110582717" } ], "sameAs": [ "https://europepmc.org/article/pmc/8312582", "https://pubmed.ncbi.nlm.nih.gov/34316323" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg006078", "name": "The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg006078" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108541616" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg006006", "name": "Synergistic Satellite Assessment of Global Vegetation Health in Relation to ENSO\u2010Induced Droughts and Pluvials", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85106871631" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg006006" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17040", "name": "Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17040" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097014618" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2020.112277", "name": "Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85099388639" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607241352" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2020.112277" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fdata.2020.597720", "name": "Monitoring Crop Status in the Continental United States Using the SMAP Level-4 Carbon Product.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fdata.2020.597720" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "7931861" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "33693422" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108560008" } ], "sameAs": [ "https://europepmc.org/article/pmc/7931861", "https://pubmed.ncbi.nlm.nih.gov/33693422" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9553899", "name": "A NEW GEOPHYSICAL MODEL BASED ALGORITHM TO DETCET MELT EVENTS OVER THE ANTRACTIC ICE SHEET USING SMAP MICROWAVE RADIOMETRY", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85129804588" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9553899" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9553812", "name": "ANTARCTICA ICE SHEET MELT DETECTION USING A MACHINE LEARNING ALGORITHM BASED ON SMAP MICROWAVE RADIOMETERY", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125998218" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9553812" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/feart.2021.654220", "name": "Comparing Greenland Ice Sheet Melt Variability From Different Satellite Passive Microwave Remote Sensing Products Over a Common 5-year Record", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/feart.2021.654220" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85112642009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13010082", "name": "Comparing evapotranspiration products of different temporal and spatial scales in native and managed prairie pastures", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13010082" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098624098" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-25-17-2021", "name": "Evaluation of 18 satellite- And model-based soil moisture products using in situ measurements from 826 sensors", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-25-17-2021" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098878972" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2021.3124229", "name": "Evaluation of Surface Melt on the Greenland Ice Sheet Using SMAP L-Band Microwave Radiometry", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2021.3124229" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118599225" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9554790", "name": "GLOBAL UPSCALING OF THE MODIS LAND COVER WITH GOOGLE EARTH ENGINE AND LANDSAT DATA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9554790" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85129814004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9553628", "name": "MAPS OF ACTIVE LAYER THICKNESS ON THE NORTH SLOPE OF ALASKA BY UPSCALING P-BAND POLARIMETRIC SAR RETRIEVALS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126022821" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9553628" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9553220", "name": "MONITORING ECO-HYDROLOGICAL SPRING ONSET OVER ALASKA AND NORTHERN CANADA WITH COMPLEMENTARY SATELLITE REMOTE SENSING DATA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9553220" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126014359" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss47720.2021.9553405", "name": "POTENTIAL OF FULL-POLARIMETRIC P- AND L-BAND SAR DATA IN CHARACTERIZING POST-FIRE RECOVERY OF ARCTIC TUNDRA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss47720.2021.9553405" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126044589" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ac358b", "name": "Siberian 2020 heatwave increased spring CO2uptake but not annual CO2uptake", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85120777829" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ac358b" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ac1222", "name": "Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85112784083" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ac1222" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-20-0217.1", "name": "The contributions of gauge-based precipitation and smap brightness temperature observations to the skill of the smap level-4 soil moisture product", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-20-0217.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103519404" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.36227/techrxiv.14714571", "name": "Validation of soil moisture data products from the NASA SMAP mission", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.36227/techrxiv.14714571" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85132057349" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020av000180", "name": "Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020av000180" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg006100", "name": "Satellite Monitoring of Global Surface Soil Organic Carbon Dynamics Using the SMAP Level 4 Carbon Product", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg006100" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098465644" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2020.112062", "name": "Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090762793" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607106729" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2020.112062" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/sciadv.abc4699", "name": "Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/sciadv.abc4699" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85095800259" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg005732", "name": "Globally Consistent Patterns of Asynchrony in Vegetation Phenology Derived From Optical, Microwave, and Fluorescence Satellite Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg005732" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85088569153" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2019.111623", "name": "Satellite detection of varying seasonal water supply restrictions on grassland productivity in the Missouri basin, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85078400111" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind606799134" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2019.111623" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12010153", "name": "A long-term passive microwave snowoff record for the alaska region 1988\u20132016", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108645677" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12010153" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2020.104836", "name": "A satellite-driven hydro-economic model to support agricultural water resources management", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2020.104836" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85092140251" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ab724a", "name": "Below-surface water mediates the response of African forests to reduced rainfall", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082761991" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ab724a" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2019.107778", "name": "Characterizing the impact of climatic and price anomalies on agrosystems in the northwest United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2019.107778" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85072973581" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2020.125398", "name": "Connections between the hydrological cycle and crop yield in the rainfed U.S. Corn Belt", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089548678" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2020.125398" } ] }, { "@type": "CreativeWork", "name": "Diagnosing environmental controls on vegetation greening and browning trends over Alaska and Northwest Canada using complementary satellite observations", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85148773991" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss39084.2020.9324007", "name": "Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85101962593" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss39084.2020.9324007" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss39084.2020.9324061", "name": "Estimating Global Evapotranspiration Using Smap Surface and Root-Zone Moisture Content", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102001023" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss39084.2020.9324061" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019jd032029", "name": "Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO2 Measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jd032029" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089387058" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-17-5861-2020", "name": "Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-17-5861-2020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098457769" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss39084.2020.9323626", "name": "Melt Detection over Greenland Using Smap Radiometer Observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102011774" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss39084.2020.9323626" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-20-55-2020", "name": "Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land-atmosphere model (GFDL AM4.0/LM4.0)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077568385" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-20-55-2020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.13209/j.0479-8023.2020.076", "name": "Review of Regionalization and Remote Sensing Based Method for Hydrological Model Parameters Calibration in Ungauged Basins,\u57fa\u4e8e\u9065\u611f\u4e0e\u533a\u57df\u5316\u65b9\u6cd5\u7684\u65e0\u8d44\u6599\u6d41\u57df\u6c34\u6587\u6a21\u578b\u53c2\u6570\u4f18\u5316\u65b9\u6cd5", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.13209/j.0479-8023.2020.076" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097493498" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss39084.2020.9323552", "name": "Satellite Flood Assessment and Forecasts from SMAP and Landsat", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102007901" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss39084.2020.9323552" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12030428", "name": "Satellite-based evapotranspiration in hydrological model calibration", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85080964490" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12030428" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10584-020-02894-0", "name": "Seasonality of biological and physical systems as indicators of climatic variation and change", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85094920528" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10584-020-02894-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10584-018-2155-9", "name": "Terrestrial primary productivity indicators for inclusion in the National Climate Indicators System", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042537681" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10584-018-2155-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14863", "name": "Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14863" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074762067" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "31596019" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/31596019" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-019-0592-8", "name": "Large loss of CO2 in winter observed across the northern permafrost region.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074223265" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "8781060" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "35069807" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-019-0592-8" } ], "sameAs": [ "https://europepmc.org/article/pmc/8781060", "https://pubmed.ncbi.nlm.nih.gov/35069807" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2019.05.020", "name": "Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind606448653" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85065868078" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2019.05.020" } ] }, { "@type": "CreativeWork", "name": "Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind606560414" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr024633", "name": "Multicomponent Satellite Assessment of Drought Severity in the Contiguous United States From 2002 to 2017 Using AMSR\u2010E and AMSR2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr024633" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068512665" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-019-0644-0", "name": "Author Correction: Large loss of CO2 in winter observed across the northern permafrost region (Nature Climate Change, (2019), 9, 11, (852-857), 10.1038/s41558-019-0592-8)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075030533" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-019-0644-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2019.8898856", "name": "Developing A Soil Inversion Model Framework for Regional Permafrost Monitoring", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2019.8898856" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077712868" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2019.111360", "name": "Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2019.111360" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070573469" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11111317", "name": "Global assessment of the SMAP freeze/thaw data record and regional applications for detecting spring onset and frost events", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85067416818" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11111317" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ab22c3", "name": "Impacts of the 2017 flash drought in the US Northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85072044245" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ab22c3" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aaeec1", "name": "Integrating snow science and wildlife ecology in Arctic-boreal North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064113480" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aaeec1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11161952", "name": "Remote sensing of environmental changes in cold regions: Methods, achievements and challenges", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071586457" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11161952" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11202392", "name": "Role of surface melt and Icing Events in Livestock Mortality across Mongolia's Semi-Arid Landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11202392" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074209337" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-13-197-2019", "name": "Sensitivity of active-layer freezing process to snow cover in Arctic Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85060460892" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-13-197-2019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2019.8898354", "name": "Smap L4 Assessment of the Us Northern Plains 2017 Flash Drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077721311" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2019.8898354" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2019.8898398", "name": "Verification of the SMAP Level-4 Soil Moisture Analysis Using Rainfall Observations in Australia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077697739" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2019.8898398" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019ms001729", "name": "Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019ms001729" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074289293" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aac9d3", "name": "Rain-on-snow events in Alaska, their frequency and distribution from satellite observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85056547933" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aac9d3" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs10081175", "name": "Global Satellite Retrievals of the Near-Surface Atmospheric Vapor Pressure Deficit from AMSR-E and AMSR2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs10081175" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051623432" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-018-21172-9", "name": "Future global productivity will be affected by plant trait response to climate.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "29434266" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "5809371" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-018-21172-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042033867" } ], "sameAs": [ "https://pubmed.ncbi.nlm.nih.gov/29434266", "https://europepmc.org/article/pmc/5809371" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017gl075922", "name": "Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040746177" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017gl075922" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-12-145-2018", "name": "Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040794795" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "7309651" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-12-145-2018" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "32577170" } ], "sameAs": [ "https://europepmc.org/article/pmc/7309651", "https://pubmed.ncbi.nlm.nih.gov/32577170" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.04.054", "name": "Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046748732" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.04.054" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2018.8518733", "name": "Global freeze/thaw product from L-band radiometer data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064168793" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2018.8518733" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aacf72", "name": "Quantifying the effects of freeze-thaw transitions and snowpack melt on land surface albedo and energy exchange over Alaska and Western Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aacf72" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85056521102" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs10030372", "name": "Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs10030372" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044332732" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-17-0130.1", "name": "Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmc", "value": "6196324" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85034763018" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "30364509" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-17-0130.1" } ], "sameAs": [ "https://europepmc.org/article/pmc/6196324", "https://pubmed.ncbi.nlm.nih.gov/30364509" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017jg004142", "name": "Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85034267759" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017jg004142" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2017.03.007", "name": "Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85015983120" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.03.007" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605643924" } ] }, { "@type": "CreativeWork", "name": "The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605761898" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9080863", "name": "A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9080863" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85028421970" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-16-0182.1", "name": "A global gridded dataset of GRACE drought severity index for 2002-14: Comparison with PDSI and SPEI and a case study of the Australia millennium drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85028010483" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-16-0182.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-9-791-2017", "name": "A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032704012" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-9-791-2017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-9-133-2017", "name": "An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85013167821" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-9-133-2017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-17-0063.1", "name": "Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032730324" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-17-0063.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017jg003958", "name": "Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017jg003958" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039171139" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9060530", "name": "Global analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar-induced chlorophyll fluorescence", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9060530" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021052702" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2017.8127515", "name": "Landscape freeze/thaw standerd and enhanced products from soil moisture active/passive (SMAP) radiometer data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041797412" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2017.8127515" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2017.8127517", "name": "Monitoring ecosystem-atmosphere co2 exchange respose to recent (2015-2016) climate variability using the smap l4 carbon product", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2017.8127517" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041829540" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-11-47-2017", "name": "Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-11-47-2017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85009488912" } ] }, { "@type": "CreativeWork", "name": "Satellite microwave remote sensing of landscape freeze-thaw status related to frost hazard monitoring", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85057967970" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jcli-d-16-0458.1", "name": "Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85019936821" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jcli-d-16-0458.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aa6965", "name": "Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85019948208" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aa6965" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2017.2729343", "name": "The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land-Atmosphere CO2 Exchange", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2017.2729343" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85029006058" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2017.06.043", "name": "The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.06.043" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85026512271" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.08.019", "name": "Satellite detection of soil moisture related water stress impacts on ecosystem productivity using the MODIS-based photochemical reflectance index", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84989858426" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605566174" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.08.019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.07.029", "name": "Implementation of satellite based fractional water cover indices in the pan-Arctic region using AMSR-E and MODIS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84979876702" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605566147" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.07.029" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13489", "name": "The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84999040079" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "27594213" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13489" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/27594213" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2015.12.046", "name": "Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605312769" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84957727745" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2015.12.046" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/mec.13517", "name": "Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84957074941" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "26677031" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/mec.13517" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/26677031" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1371/journal.pone.0147285", "name": "Remote Sensing Derived Fire Frequency, Soil Moisture and Ecosystem Productivity Explain Regional Movements in Emu over Australia.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmc", "value": "4723036" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "26799732" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1371/journal.pone.0147285" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84958211965" } ], "sameAs": [ "https://europepmc.org/article/pmc/4723036", "https://pubmed.ncbi.nlm.nih.gov/26799732" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/wat2.1168", "name": "A review of remote sensing based actual evapotranspiration estimation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wat2.1168" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097188992" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-13-45-2016", "name": "Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-13-45-2016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84958729579" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jcli-d-15-0802.1", "name": "Future decreases in freezing days across North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991252423" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jcli-d-15-0802.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs8040336", "name": "Hydrological response of Alpine wetlands to climate warming in the Eastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs8040336" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84971655979" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2016.7729025", "name": "Landscape freeze/thaw products from Soil Moisture Active/Passive (SMAP) radar and radiometer data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2016.7729025" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85007480285" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2015.2462758", "name": "Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84947034314" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2015.2462758" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jcli-d-15-0569.1", "name": "Quantification of warming climate-induced changes in terrestrial Arctic river ice thickness and phenology", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84960863460" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jcli-d-15-0569.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2016.7729026", "name": "SMAP Level 4 Surface and Root Zone Soil Moisture", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85007452354" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2016.7729026" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2016.7729027", "name": "The SMAP level 4 carbon product for monitoring terrestrial ecosystem-atmosphere CO2 exchange", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85007500571" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2016.7729027" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.2237749", "name": "Using MODIS weekly evapotranspiration to monitor drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006996488" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.2237749" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1516017113", "name": "Cold season emissions dominate the Arctic tundra methane budget.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "26699476" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84953226850" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "4711884" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1516017113" } ], "sameAs": [ "https://pubmed.ncbi.nlm.nih.gov/26699476", "https://europepmc.org/article/pmc/4711884" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/m1mzx-69w61", "name": "Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/m1mzx-69w61" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/srep15956", "name": "Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "26514110" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946127716" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "4626800" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/srep15956" } ], "sameAs": [ "https://pubmed.ncbi.nlm.nih.gov/26514110", "https://europepmc.org/article/pmc/4626800" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/9tfhy-n0s16", "name": "Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/9tfhy-n0s16" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-12-4385-2015", "name": "Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-12-4385-2015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84938322699" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-14-0065.1", "name": "Assimilation of Freeze-Thaw observations into the NASA catchment land surface model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-14-0065.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941193874" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jurse.2015.7120496", "name": "Change in our MIDST: Toward detection and analysis of urban land dynamics in North and South America", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jurse.2015.7120496" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84938863677" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2325409", "name": "Classification of Alaska spring thaw characteristics using satellite L-band radar remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2325409" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906783075" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs71215847", "name": "Climatic controls on spring onset of the Tibetan Plateau grasslands from 1982 to 2008", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs71215847" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84971672668" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-12-9121-2015", "name": "Environmental controls on the greening of terrestrial vegetation across northern Eurasia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-12-9121-2015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042736294" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/10/12/124024", "name": "Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84952934819" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/10/12/124024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/10/8/084004", "name": "New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84938718666" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/10/8/084004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/ngeo2382", "name": "Photosynthetic seasonality of global tropical forests constrained by hydroclimate", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/ngeo2382" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84926321039" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1201/b18336", "name": "Physics: Curiosities, oddities, and novelties", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1201/b18336" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85053647528" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2361344", "name": "Satellite microwave retrieval of total precipitable water vapor and surface air temperature over land from AMSR2", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84920950463" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2361344" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/10/6/064014", "name": "Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/10/6/064014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84937509345" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-12-5811-2015", "name": "The role of snow cover affecting boreal-arctic soil freeze-thaw and carbon dynamics", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-12-5811-2015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84944348374" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs70709450", "name": "Theoretical modeling and analysis of L- and P-band radar backscatter sensitivity to soil active layer dielectric variations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs70709450" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84937824674" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.04.001", "name": "Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84899669459" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605353883" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.04.001" } ] }, { "@type": "CreativeWork", "name": "Remote monitoring of soil moisture using passive microwave-based techniques \u2014 Theoretical basis and overview of selected algorithms for AMSR-E", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind6059882" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2014.01.013", "name": "Remote monitoring of soil moisture using passive microwave-based techniques \u2014 Theoretical basis and overview of selected algorithms for AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind600059882" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84893922324" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2014.01.013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-11-1961-2014", "name": "A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84898035612" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-1961-2014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/9/12/124021", "name": "Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/12/124021" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84919608969" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2014.915595", "name": "Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84901649622" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2014.915595" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2013.09.020", "name": "Effects of spatial and temporal climatic variability on terrestrial carbon and water fluxes in the Pacific Northwest, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887196463" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2013.09.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014jg002709", "name": "Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84921892741" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014jg002709" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs6098594", "name": "Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907452179" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs6098594" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2303635", "name": "Multisensor microwave sensitivity to freeze/thaw dynamics across a complex boreal landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2303635" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84902079342" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs6098387", "name": "Retrievals of all-weather daily air temperature using MODIS and AMSR-E data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907474005" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs6098387" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/9/6/064003", "name": "Spring hydrology determines summer net carbon uptake in northern ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/6/064003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84903641604" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/9/7/075001", "name": "Surface water inundation in the boreal-Arctic: Potential impacts on regional methane emissions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/7/075001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84905270468" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2013jg002572", "name": "Terrestrial hydrological controls on land surface phenology of African savannas and woodlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013jg002572" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84918498997" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-0-387-36699-9_188", "name": "Vegetation phenology", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-0-387-36699-9_188" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85026773734" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2664.12137", "name": "Steelhead vulnerability to climate change in the Pacific Northwest", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2664.12137" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84890860090" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607069151" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00484-013-0726-z", "name": "Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00484-013-0726-z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904176748" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "24005849" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/24005849" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.12288", "name": "Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12288" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "23749682" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883553350" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/23749682" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/bams-d-11-00213.1", "name": "A remotely sensed global terrestrial drought severity index", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873423406" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/bams-d-11-00213.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rra.1585", "name": "Estimation of juvenile salmon habitat in pacific rim rivers using multiscalar remote sensing and geospatial analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873279911" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rra.1585" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2013jd020639", "name": "Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84891275548" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013jd020639" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jgrg.20053", "name": "Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880114500" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jgrg.20053" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rra.2590", "name": "Restoring salmon habitat for a changing climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885867009" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rra.2590" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/8/2/024028", "name": "Sensitivity of inferred climate model skill to evaluation decisions: A case study using CMIP5 evapotranspiration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/8/2/024028" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880882512" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2012.09.003", "name": "Satellite Microwave remote sensing of contrasting surface water inundation changes within the Arctic\u2013Boreal Region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84866914955" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind600876269" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2012.09.003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2012.07.018", "name": "Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "23049143" }, { "@type": "PropertyValue", "propertyID": "pmc", "value": "3463408" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864920908" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2012.07.018" } ], "sameAs": [ "https://pubmed.ncbi.nlm.nih.gov/23049143", "https://europepmc.org/article/pmc/3463408" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2012.03.025", "name": "Satellite passive microwave detection of North America start of season", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind600876119" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860312600" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2012.03.025" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2012.02.014", "name": "Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862781792" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind600876074" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2012.02.014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012wr012313", "name": "A new global river network database for macroscale hydrologic modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012wr012313" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867223837" } ] }, { "@type": "CreativeWork", "name": "A riverscape analysis tool developed to assist wild salmon conservation across the North Pacific Rim,Una herramienta de an\u00e1lisis fluvial de-sarrollada para apoyar la conservaci\u00f3n del salm\u00f3n silvestre a lo largo de la cordillera del pac\u00edfico norte", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863996941" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-9-3185-2012", "name": "An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-9-3185-2012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867459354" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2174368", "name": "Application of quikSCAT backscatter to SMAP validation planning: Freeze/Thaw state over ALECTRA sites in Alaska from 2000 to 2007", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2174368" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856329928" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012gl051623", "name": "Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012gl051623" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861172985" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012wr012082", "name": "Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012wr012082" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870620821" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2010.12.015", "name": "Satellite passive microwave remote sensing for monitoring global land surface phenology", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2010.12.015" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind600875574" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053237224" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2011.6049888", "name": "Active and Passive multi-scale microwave remote sensing of the Alaska Ecological Transect: Application to SMAP freeze/thaw state validation planning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80955139415" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2011.6049888" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009wr008871", "name": "Automated upscaling of river networks for macroscale hydrological modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009wr008871" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952713682" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.8350", "name": "Changing freeze-thaw seasons in northern high latitudes and associated influences on evapotranspiration", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84155162802" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.8350" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2010.2070515", "name": "Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2010.2070515" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952042708" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2011jcli4034.1", "name": "Evaluation of MERRA land surface estimates in preparation for the soil moisture active passive mission", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960666099" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2011jcli4034.1" } ] }, { "@type": "CreativeWork", "name": "Monitoring inundated wetlands ecosystems with satellite microwave remote sensing in support of earth system science research", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879751270" } }, { "@type": "CreativeWork", "name": "Monitoring of net ecosystem CO2 exchange for the soil moisture active passive mission", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879747985" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011eo180002", "name": "Scoping completed for an experiment to assess vulnerability of Arctic and boreal ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011eo180002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79958064400" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nature09396", "name": "Recent decline in the global land evapotranspiration trend due to limited moisture supply.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78049234152" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "20935626" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature09396" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/20935626" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009wr008800", "name": "A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77957556173" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009wr008800" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2010jcli3421.1", "name": "Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2010jcli3421.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955638468" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2010.5652955", "name": "Quikscat backscatter sensitivity to landscape freeze/thaw state over ALECTRA sites in Alaska from 2000 to 2007: Application to SMAP validation planning", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2010.5652955" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650865066" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.2044", "name": "Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77956704217" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.2044" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2010.2041530", "name": "Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2010.2041530" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77649100032" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jproc.2010.2043918", "name": "The soil moisture active passive (SMAP) mission", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77952212845" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jproc.2010.2043918" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2008ei239.1", "name": "The western arctic linkage experiment (WALE): Overview and synthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2008ei239.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-65549089573" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2009.01910.x", "name": "Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind44255373" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70149091491" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2009.01910.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2009.5417921", "name": "A method for deriving land surface moisture, vegetation optical depth, and open water fraction from AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77950952805" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2009.5417921" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2008.2003248", "name": "A satellite approach to estimate land-atmosphere CO2 exchange for boreal and Arctic biomes using MODIS and AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2008.2003248" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-59849105460" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2008wr007189", "name": "Satellite assessment of land surface evapotranspiration for the pan-Arctic domain", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-72149098587" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008wr007189" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2009.09.047", "name": "Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70350592171" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2009.09.047" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2007jg000621", "name": "Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-69549114673" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2007jg000621" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/05-1149", "name": "Climate, hydrologic disturbance, and succession: drivers of floodplain pattern.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "17536710" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/05-1149" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247362865" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/17536710" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/1051-0761(2007)017[0213:atcboc]2.0.co;2", "name": "Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/1051-0761(2007)017[0213:atcboc]2.0.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247156505" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "17479847" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/17479847" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2007gl031605", "name": "Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2007gl031605" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38549145488" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2007eo340001", "name": "Northern high-latitude ecosystems respond to climate change", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548677762" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2007eo340001" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/ei180.1", "name": "Recent climate-driven increases in vegetation productivity for the western Arctic: Evidence of an acceleration of the northern terrestrial carbon cycle", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/ei180.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955934423" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2007.898436", "name": "Satellite microwave remote sensing of boreal and arctic soil temperatures from AMSR-E", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2007.898436" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34347233367" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2006jg000249", "name": "Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006jg000249" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249785657" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2006.01113.x", "name": "Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind43794633" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33645510484" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2006.01113.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2005.853936", "name": "Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33746335642" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2005.853936" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2005jd006588", "name": "Evaluation of the Sea Winds scatterometer for regional monitoring of vegetation phenology", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005jd006588" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33847016441" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11027-005-9014-5", "name": "Satellite remote sensing of terrestrial net primary production for the pan-Arctic basin and Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33748789875" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11027-005-9014-5" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/ei187.1", "name": "Spring thaw and its effect on terrestrial vegetation productivity in the Western Arctic observed from satellite microwave and optical remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548296451" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/ei187.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2005.11.014", "name": "Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646567492" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2005.11.014" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "16364407" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/16364407" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/03-5290", "name": "Using airborne multispectral imagery to evaluate geomorphic work across floodplains of gravel\u2010bed rivers", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/03-5290" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind605875398" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-23044486685" } ] }, { "@type": "CreativeWork", "name": "Global biomass variation and its geodynamic effects: 1982-98", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20044361912" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/ei126.1", "name": "Global biomass variation and its geodynamic effects: 1982-98", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/ei126.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955961895" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160512331326693", "name": "Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160512331326693" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-19944410847" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2005gl024230", "name": "Interannual variability in North American grassland biomass/productivity detected by SeaWinds scatterometer backscatter", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005gl024230" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-29344455507" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2004.12.018", "name": "Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2004.12.018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-25844493666" } ] }, { "@type": "CreativeWork", "name": "Remote sensing in BOREAS: Lessons learned", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind44315645" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2", "name": "Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-2942532259" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/03-4049", "name": "Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/03-4049" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-4444264831" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2002.06.004", "name": "Radar remote sensing of the spring thaw transition across a boreal landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0842327884" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2002.06.004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2003.08.017", "name": "Remote sensing in BOREAS: Lessons learned", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-10744230173" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2003.08.017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.578815", "name": "Satellite observations of annual variability in terrestrial carbon cycles and seasonal growing seasons at high northern latitudes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.578815" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20344366086" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2004.01.002", "name": "Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2004.01.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-1542379714" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.578906", "name": "Spaceborne microwave remote sensing of seasonal freeze-thaw processes in the terrestrial high latitudes: Relationships with land-atmosphere CO 2 exchange", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.578906" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20444379596" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1139/x03-213", "name": "The effects of spatial aggregation of complex topography on hydroecological process simulations within a rugged forest landscape: Development and application of a satellite-based topoclimatic model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-2942722656" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x03-213" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2004.834631", "name": "The hydrosphere state (hydros) satellite mission: An earth system pathfinder for global mapping of soil moisture and land freeze/thaw", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2004.834631" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-7044262193" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-2486.2003.00668.x", "name": "Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2486.2003.00668.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0242370057" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2002.803737", "name": "Diurnal and spatial variation of xylem dielectric constant in Norway Spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036763065" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2002.803737" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0034-4257(00)00160-7", "name": "Application of the NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0034-4257(00)00160-7" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035125574" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2000jd900850", "name": "Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2000jd900850" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035727699" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2000jd000224", "name": "Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035727714" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2000jd000224" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2000ja000321", "name": "Relation between optical emissions, particles, electric fields, and Alfv\u00e9n waves in a multiple rayed arc", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2000ja000321" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-39449135383" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-2486.2000.06020.x", "name": "Simulating the effects of climate change on the carbon balance of North American high-latitude forests.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034425745" }, { "@type": "PropertyValue", "propertyID": "pmid", "value": "35026932" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2486.2000.06020.x" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/35026932" }, { "@type": "CreativeWork", "name": "Simulating the effects of climate change on the carbon balance of North American high\u2010latitude forests", "identifier": { "@type": "PropertyValue", "propertyID": "other-id", "value": "ind607628578" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/20.11.761", "name": "Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "12651512" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0001701786" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/20.11.761" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/12651512" }, { "@type": "CreativeWork", "name": "Application of spaceborne scatterometer for mapping freeze-thaw state in northern landscapes as a measure of ecological and hydrological processes", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033327666" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/99eo00158", "name": "Radar remote sensing proposed for monitoring freeze-thaw transitions in boreal regions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84900424374" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/99eo00158" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/1999jd900085", "name": "Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033610968" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/1999jd900085" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/1998jd200093", "name": "Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/1998jd200093" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033610978" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/98gl01058", "name": "Aircraft observations conjugate to FAST: Auroral arc thicknesses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/98gl01058" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032098207" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1569::aid-hyp682>3.0.co;2-l", "name": "The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032147796" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/(sici)1099-1085(199808/09)12:10/11<1569::aid-hyp682>3.0.co;2-l" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/17.8-9.589", "name": "Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.", "identifier": [ { "@type": "PropertyValue", "propertyID": "pmid", "value": "14759832" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030986517" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/17.8-9.589" } ], "sameAs": "https://pubmed.ncbi.nlm.nih.gov/14759832" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0168-1923(96)02366-0", "name": "An improved method for estimating surface humidity from daily minimum temperature", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0168-1923(96)02366-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030812880" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/97jd02235", "name": "BIOME-BGC simulations of stand hydrologic processes for BOREAS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031433818" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/97jd02235" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169308954008", "name": "The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027788684" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169308954008" } ] } ] }, "url": [ "http://ntsg.umt.edu", "http://www.umt.edu/cire" ], "identifier": [ { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "288105" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "57189939159" } ] }
}