Item talk:Q140374

From geokb

{

 "OpenAlex": {
   "id": "https://openalex.org/A5084676540",
   "orcid": "https://orcid.org/0000-0002-3760-3935",
   "display_name": "Murali Krishna Gumma",
   "display_name_alternatives": [
     "Gumma",
     "Murail Krishna Gumma",
     "Murali K. Gumma",
     "M. K. Gumma",
     "Muralikrishna Gumma",
     "Murali Gumma",
     "Murali Krishna Gumma",
     "M Gumma",
     "Krishna Murali Gumma",
     "M. Murali Krishna",
     "M. Krishna"
   ],
   "works_count": 163,
   "cited_by_count": 5288,
   "summary_stats": {
     "2yr_mean_citedness": 5.266666666666667,
     "h_index": 36,
     "i10_index": 68
   },
   "ids": {
     "openalex": "https://openalex.org/A5084676540",
     "orcid": "https://orcid.org/0000-0002-3760-3935"
   },
   "affiliations": [
     {
       "institution": {
         "id": "https://openalex.org/I4210163774",
         "ror": "https://ror.org/0541a3n79",
         "display_name": "International Crops Research Institute for the Semi-Arid Tropics",
         "country_code": "IN",
         "type": "nonprofit",
         "lineage": [
           "https://openalex.org/I4210163774"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2021,
         2020,
         2019,
         2018,
         2017,
         2016,
         2015
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I48025715",
         "ror": "https://ror.org/02g43d244",
         "display_name": "International Crops Research Institute for the Semi-Arid Tropics",
         "country_code": "ML",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I1286583668",
           "https://openalex.org/I48025715"
         ]
       },
       "years": [
         2022,
         2016,
         2014,
         2013
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I85461943",
         "ror": "https://ror.org/0034me914",
         "display_name": "Saveetha University",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I85461943"
         ]
       },
       "years": [
         2022
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210111918",
         "ror": "https://ror.org/020ktwj02",
         "display_name": "African Union",
         "country_code": "ET",
         "type": "government",
         "lineage": [
           "https://openalex.org/I4210111918"
         ]
       },
       "years": [
         2022
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210145155",
         "ror": "https://ror.org/048es2e39",
         "display_name": "International Water Management Institute",
         "country_code": "ET",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I1286583668",
           "https://openalex.org/I4210145155",
           "https://openalex.org/I60325297"
         ]
       },
       "years": [
         2020
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I885392262",
         "ror": "https://ror.org/0440p1d37",
         "display_name": "GITAM University",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I885392262"
         ]
       },
       "years": [
         2020
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210117728",
         "ror": "https://ror.org/021wvg932",
         "display_name": "Center For Remote Sensing (United States)",
         "country_code": "US",
         "type": "company",
         "lineage": [
           "https://openalex.org/I4210117728"
         ]
       },
       "years": [
         2019
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I162210093",
         "ror": "https://ror.org/0593p4448",
         "display_name": "International Rice Research Institute",
         "country_code": "PH",
         "type": "nonprofit",
         "lineage": [
           "https://openalex.org/I1286583668",
           "https://openalex.org/I162210093"
         ]
       },
       "years": [
         2014,
         2012,
         2011
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I158867519",
         "ror": "https://ror.org/00jatyx22",
         "display_name": "International Management Institute",
         "country_code": "IN",
         "type": "education",
         "lineage": [
           "https://openalex.org/I158867519"
         ]
       },
       "years": [
         2010
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I165779595",
         "ror": "https://ror.org/01ej9dk98",
         "display_name": "University of Melbourne",
         "country_code": "AU",
         "type": "education",
         "lineage": [
           "https://openalex.org/I165779595"
         ]
       },
       "years": [
         2010
       ]
     }
   ],
   "last_known_institutions": [
     {
       "id": "https://openalex.org/I4210163774",
       "ror": "https://ror.org/0541a3n79",
       "display_name": "International Crops Research Institute for the Semi-Arid Tropics",
       "country_code": "IN",
       "type": "nonprofit",
       "lineage": [
         "https://openalex.org/I4210163774"
       ]
     }
   ],
   "topics": [
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "count": 30,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13508",
       "display_name": "Agricultural Development and Policy in South Asia",
       "count": 14,
       "subfield": {
         "id": "https://openalex.org/subfields/1100",
         "display_name": "General Agricultural and Biological Sciences"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10439",
       "display_name": "Adaptation to Climate Change in Agriculture",
       "count": 12,
       "subfield": {
         "id": "https://openalex.org/subfields/1105",
         "display_name": "Ecology, Evolution, Behavior and Systematics"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "count": 9,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12045",
       "display_name": "Rice Water Management and Productivity Enhancement",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10969",
       "display_name": "Optimal Operation of Water Resources Systems",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11886",
       "display_name": "Risk Management and Vulnerability in Agriculture",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10330",
       "display_name": "Hydrological Modeling and Water Resource Management",
       "count": 4,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13058",
       "display_name": "Land-Use Suitability Assessment Using GIS",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/2308",
         "display_name": "Management, Monitoring, Policy and Law"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12543",
       "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10770",
       "display_name": "Digital Soil Mapping Techniques",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11229",
       "display_name": "Cultivar Evaluation and Mega-Environment Investigation",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10757",
       "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/3305",
         "display_name": "Geography, Planning and Development"
       },
       "field": {
         "id": "https://openalex.org/fields/33",
         "display_name": "Social Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10640",
       "display_name": "Chemometrics in Analytical Chemistry and Food Technology",
       "count": 3,
       "subfield": {
         "id": "https://openalex.org/subfields/1602",
         "display_name": "Analytical Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/16",
         "display_name": "Chemistry"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13899",
       "display_name": "Ecological Mechanisms of Rice-Fish Farming Systems",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/1105",
         "display_name": "Ecology, Evolution, Behavior and Systematics"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12115",
       "display_name": "Genomics and Breeding of Legume Crops",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11186",
       "display_name": "Global Drought Monitoring and Assessment",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11404",
       "display_name": "Deficit Irrigation for Agricultural Water Management",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11468",
       "display_name": "Genetic Architecture of Quantitative Traits",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/1311",
         "display_name": "Genetics"
       },
       "field": {
         "id": "https://openalex.org/fields/13",
         "display_name": "Biochemistry, Genetics and Molecular Biology"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13125",
       "display_name": "Genetics and Breeding of Cowpea",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10930",
       "display_name": "Global Flood Risk Assessment and Management",
       "count": 2,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14323",
       "display_name": "Water Resource Management and Sustainability",
       "count": 1,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14044",
       "display_name": "Knowledge Clusters in Developing Countries",
       "count": 1,
       "subfield": {
         "id": "https://openalex.org/subfields/3303",
         "display_name": "Development"
       },
       "field": {
         "id": "https://openalex.org/fields/33",
         "display_name": "Social Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     }
   ],
   "topic_share": [
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "value": 0.0002103,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10439",
       "display_name": "Adaptation to Climate Change in Agriculture",
       "value": 0.0001945,
       "subfield": {
         "id": "https://openalex.org/subfields/1105",
         "display_name": "Ecology, Evolution, Behavior and Systematics"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14323",
       "display_name": "Water Resource Management and Sustainability",
       "value": 0.0001054,
       "subfield": {
         "id": "https://openalex.org/subfields/2312",
         "display_name": "Water Science and Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14044",
       "display_name": "Knowledge Clusters in Developing Countries",
       "value": 9.47e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/3303",
         "display_name": "Development"
       },
       "field": {
         "id": "https://openalex.org/fields/33",
         "display_name": "Social Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13508",
       "display_name": "Agricultural Development and Policy in South Asia",
       "value": 8.92e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1100",
         "display_name": "General Agricultural and Biological Sciences"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11886",
       "display_name": "Risk Management and Vulnerability in Agriculture",
       "value": 5.31e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12045",
       "display_name": "Rice Water Management and Productivity Enhancement",
       "value": 5.21e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "value": 5.11e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13058",
       "display_name": "Land-Use Suitability Assessment Using GIS",
       "value": 5.01e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2308",
         "display_name": "Management, Monitoring, Policy and Law"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12543",
       "display_name": "Mapping Groundwater Potential Zones Using GIS Techniques",
       "value": 4.92e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10969",
       "display_name": "Optimal Operation of Water Resources Systems",
       "value": 4.37e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "value": 3.54e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14405",
       "display_name": "Sustainable Agricultural Development and Resource Management",
       "value": 3.43e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1100",
         "display_name": "General Agricultural and Biological Sciences"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "value": 3.15e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13899",
       "display_name": "Ecological Mechanisms of Rice-Fish Farming Systems",
       "value": 3.07e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1105",
         "display_name": "Ecology, Evolution, Behavior and Systematics"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10770",
       "display_name": "Digital Soil Mapping Techniques",
       "value": 2.99e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12115",
       "display_name": "Genomics and Breeding of Legume Crops",
       "value": 2.85e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12855",
       "display_name": "Genomics and Breeding of Peanut",
       "value": 2.62e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11229",
       "display_name": "Cultivar Evaluation and Mega-Environment Investigation",
       "value": 2.58e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1110",
         "display_name": "Plant Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12896",
       "display_name": "Evaluation of Environmental Impact in Agriculture",
       "value": 2.45e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2304",
         "display_name": "Environmental Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11186",
       "display_name": "Global Drought Monitoring and Assessment",
       "value": 1.97e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10757",
       "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing",
       "value": 1.82e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/3305",
         "display_name": "Geography, Planning and Development"
       },
       "field": {
         "id": "https://openalex.org/fields/33",
         "display_name": "Social Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11404",
       "display_name": "Deficit Irrigation for Agricultural Water Management",
       "value": 1.8e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1111",
         "display_name": "Soil Science"
       },
       "field": {
         "id": "https://openalex.org/fields/11",
         "display_name": "Agricultural and Biological Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13341",
       "display_name": "Optimization of Belt Conveyor Systems",
       "value": 1.65e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2210",
         "display_name": "Mechanical Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13711",
       "display_name": "Role of Microbial Metabolites in Human Health",
       "value": 1.54e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1303",
         "display_name": "Biochemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/13",
         "display_name": "Biochemistry, Genetics and Molecular Biology"
       },
       "domain": {
         "id": "https://openalex.org/domains/1",
         "display_name": "Life Sciences"
       }
     }
   ],
   "x_concepts": [
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 95.7
     },
     {
       "id": "https://openalex.org/C86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 88.3
     },
     {
       "id": "https://openalex.org/C18903297",
       "wikidata": "https://www.wikidata.org/wiki/Q7150",
       "display_name": "Ecology",
       "level": 1,
       "score": 81.6
     },
     {
       "id": "https://openalex.org/C39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 75.5
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 74.2
     },
     {
       "id": "https://openalex.org/C95457728",
       "wikidata": "https://www.wikidata.org/wiki/Q309",
       "display_name": "History",
       "level": 0,
       "score": 62.0
     },
     {
       "id": "https://openalex.org/C166957645",
       "wikidata": "https://www.wikidata.org/wiki/Q23498",
       "display_name": "Archaeology",
       "level": 1,
       "score": 61.3
     },
     {
       "id": "https://openalex.org/C127413603",
       "wikidata": "https://www.wikidata.org/wiki/Q11023",
       "display_name": "Engineering",
       "level": 0,
       "score": 60.7
     },
     {
       "id": "https://openalex.org/C118518473",
       "wikidata": "https://www.wikidata.org/wiki/Q11451",
       "display_name": "Agriculture",
       "level": 2,
       "score": 57.1
     },
     {
       "id": "https://openalex.org/C6557445",
       "wikidata": "https://www.wikidata.org/wiki/Q173113",
       "display_name": "Agronomy",
       "level": 1,
       "score": 50.9
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 49.7
     },
     {
       "id": "https://openalex.org/C62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 47.2
     },
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 41.7
     },
     {
       "id": "https://openalex.org/C111368507",
       "wikidata": "https://www.wikidata.org/wiki/Q43518",
       "display_name": "Oceanography",
       "level": 1,
       "score": 39.3
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 34.4
     },
     {
       "id": "https://openalex.org/C58640448",
       "wikidata": "https://www.wikidata.org/wiki/Q42515",
       "display_name": "Cartography",
       "level": 1,
       "score": 33.7
     },
     {
       "id": "https://openalex.org/C162324750",
       "wikidata": "https://www.wikidata.org/wiki/Q8134",
       "display_name": "Economics",
       "level": 0,
       "score": 31.9
     },
     {
       "id": "https://openalex.org/C59822182",
       "wikidata": "https://www.wikidata.org/wiki/Q441",
       "display_name": "Botany",
       "level": 1,
       "score": 28.2
     },
     {
       "id": "https://openalex.org/C71924100",
       "wikidata": "https://www.wikidata.org/wiki/Q11190",
       "display_name": "Medicine",
       "level": 0,
       "score": 25.2
     },
     {
       "id": "https://openalex.org/C146978453",
       "wikidata": "https://www.wikidata.org/wiki/Q3798668",
       "display_name": "Aerospace engineering",
       "level": 1,
       "score": 24.5
     },
     {
       "id": "https://openalex.org/C97137747",
       "wikidata": "https://www.wikidata.org/wiki/Q38112",
       "display_name": "Forestry",
       "level": 1,
       "score": 23.9
     },
     {
       "id": "https://openalex.org/C132651083",
       "wikidata": "https://www.wikidata.org/wiki/Q7942",
       "display_name": "Climate change",
       "level": 2,
       "score": 23.3
     },
     {
       "id": "https://openalex.org/C549605437",
       "wikidata": "https://www.wikidata.org/wiki/Q1229911",
       "display_name": "Food security",
       "level": 3,
       "score": 23.3
     },
     {
       "id": "https://openalex.org/C1276947",
       "wikidata": "https://www.wikidata.org/wiki/Q333",
       "display_name": "Astronomy",
       "level": 1,
       "score": 22.7
     },
     {
       "id": "https://openalex.org/C19269812",
       "wikidata": "https://www.wikidata.org/wiki/Q26540",
       "display_name": "Satellite",
       "level": 2,
       "score": 22.1
     }
   ],
   "counts_by_year": [
     {
       "year": 2024,
       "works_count": 8,
       "cited_by_count": 485
     },
     {
       "year": 2023,
       "works_count": 10,
       "cited_by_count": 737
     },
     {
       "year": 2022,
       "works_count": 7,
       "cited_by_count": 754
     },
     {
       "year": 2021,
       "works_count": 8,
       "cited_by_count": 744
     },
     {
       "year": 2020,
       "works_count": 13,
       "cited_by_count": 665
     },
     {
       "year": 2019,
       "works_count": 19,
       "cited_by_count": 534
     },
     {
       "year": 2018,
       "works_count": 11,
       "cited_by_count": 424
     },
     {
       "year": 2017,
       "works_count": 14,
       "cited_by_count": 252
     },
     {
       "year": 2016,
       "works_count": 17,
       "cited_by_count": 277
     },
     {
       "year": 2015,
       "works_count": 12,
       "cited_by_count": 218
     },
     {
       "year": 2014,
       "works_count": 5,
       "cited_by_count": 266
     },
     {
       "year": 2013,
       "works_count": 3,
       "cited_by_count": 134
     },
     {
       "year": 2012,
       "works_count": 8,
       "cited_by_count": 149
     }
   ],
   "works_api_url": "https://api.openalex.org/works?filter=author.id:A5084676540",
   "updated_date": "2024-08-19T22:05:58.681386",
   "created_date": "2023-07-21",
   "_id": "https://openalex.org/A5084676540"
 },
 "ORCID": {
   "@context": "http://schema.org",
   "@type": "Person",
   "@id": "https://orcid.org/0000-0002-3760-3935",
   "mainEntityOfPage": "https://orcid.org/0000-0002-3760-3935",
   "name": "Gumma MK",
   "givenName": "Murali Krishna",
   "familyName": "Gumma",
   "address": {
     "addressCountry": "IN",
     "@type": "PostalAddress"
   },
   "alumniOf": {
     "@type": "Organization",
     "name": "JNTU College of Engineering",
     "alternateName": "Spatial Information Technology",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "RINGGOLD",
       "value": "126242"
     }
   },
   "affiliation": {
     "@type": "Organization",
     "name": "International Crops Research Institute for the Semi-Arid Tropics",
     "alternateName": "RS/GIS lab",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "RINGGOLD",
       "value": "28639"
     }
   },
   "@reverse": {
     "creator": [
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/17538947.2024.2378815",
         "name": "Dryland cropping in different Land uses of Senegal using Sentinel-2 and hybrid ML method",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/17538947.2024.2378815"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs16152733",
         "name": "Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs16152733"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/agriengineering6010045",
         "name": "Optimizing Crop Yield Estimation through Geospatial Technology: A Comparative Analysis of a Semi-Physical Model, Crop Simulation, and Machine Learning Algorithms",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/agriengineering6010045"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2023.2186493",
         "name": "Impacts of irrigation tank restoration on water bodies and croplands in Telangana State of India using Landsat time series data and machine learning algorithms",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2023.2186493"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1038/s43247-023-01078-9",
         "name": "Greening of human-dominated ecosystems in India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1038/s43247-023-01078-9"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.14719/pst.2690",
         "name": "Field-level rice yield estimations under different farm practices using the crop simulation model for better yield",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.14719/pst.2690"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/agriengineering5040117",
         "name": "Crop Yield Assessment Using Field-Based Data and Crop Models at the Village Level: A Case Study on a Homogeneous Rice Area in Telangana, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/agriengineering5040117"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/agriengineering5030089",
         "name": "Mapping Shrimp Pond Dynamics: A Spatiotemporal Study Using Remote Sensing Data and Machine Learning",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/agriengineering5030089"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.atech.2022.100149",
         "name": "Assessment of Cropland Changes Due to New Canals in Vientiane Prefecture of Laos using Earth Observation Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.atech.2022.100149"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/15481603.2022.2088651",
         "name": "Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/15481603.2022.2088651"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/ijgi11080416",
         "name": "Identifying Suitable Watersheds across Nigeria Using Biophysical Parameters and Machine Learning Algorithms for Agri\u2013Planning",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/ijgi11080416"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/03670244.2021.1982709",
         "name": "Measuring and Influencing Behavior Change in Dietary Intake: Integrated Photovoice Approach in Nutrition Interventions in Eastern Kenya",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/03670244.2021.1982709"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s13762-021-03192-7",
         "name": "Assessing the impacts of watershed interventions using ground data and remote sensing: a case study in Ethiopia",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s13762-021-03192-7"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s12524-021-01341-6",
         "name": "Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s12524-021-01341-6"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1017/s1742170519000516",
         "name": "Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1017/s1742170519000516"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/su13147757",
         "name": "Contribution of Climate-Smart Agriculture Technologies to Food Self-Sufficiency of Smallholder Households in Mali",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/su13147757"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.ejrh.2020.100732",
         "name": "Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.ejrh.2020.100732"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/10106049.2020.1805029",
         "name": "Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/10106049.2020.1805029"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s12517-020-05611-4",
         "name": "Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s12517-020-05611-4"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.compag.2020.105595",
         "name": "Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.compag.2020.105595"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10113-020-01650-5",
         "name": "Dynamics and drivers of land use and land cover changes in Bangladesh",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s10113-020-01650-5"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/15481603.2019.1690780",
         "name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/15481603.2019.1690780"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1017/s1742170519000474",
         "name": "Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream\u2013downstream settings in dry lowlands of Afar, Ethiopia",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1017/s1742170519000474"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jag.2018.11.014",
         "name": "Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.jag.2018.11.014"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs11121475",
         "name": "Monitoring Changes in the Cultivation of Pigeonpea and Groundnut in Malawi Using Time Series Satellite Imagery for Sustainable Food Systems",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs11121475"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs11010091",
         "name": "A bibliometric profile of the Remote Sensing Open Access Journal published by MDPI between 2009 and 2018",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85059935709"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs11010091"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/17538947.2019.1651912",
         "name": "A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85071647372"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/17538947.2019.1651912"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs11151790",
         "name": "Remote sensing 10th anniversary best paper award",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs11151790"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85070473746"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/15481603.2018.1482855",
         "name": "Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85048044474"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/15481603.2018.1482855"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/agriculture8070111",
         "name": "A Review of the Available Land Cover and Cropland Maps for South Asia",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/agriculture8070111"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.fcr.2018.03.023",
         "name": "Characterization of the main chickpea cropping systems in India using a yield gap analysis approach",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.fcr.2018.03.023"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs10020244",
         "name": "Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs10020244"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.isprsjprs.2018.07.017",
         "name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85051136400"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.isprsjprs.2018.07.017"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs10122027",
         "name": "Accuracies achieved in classifying five leading world crop types and their growth stages using optimal earth observing-1 hyperion hyperspectral narrowbands on Google Earth Engine",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs10122027"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85058870617"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Mapping drought-induced changes in rice area in India"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs9111136",
         "name": "Urban Sprawl and Adverse Impacts on Agricultural Land: A Case Study on Hyderabad, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs9111136"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/17538947.2016.1267269",
         "name": "Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000\u20132015) data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/17538947.2016.1267269"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85008422868"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.isprsjprs.2017.01.019",
         "name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.isprsjprs.2017.01.019"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85014705870"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/15481603.2017.1290913",
         "name": "Fallow-land Algorithm based on Neighborhood and Temporal Anomalies (FANTA) to map planted versus fallowed croplands using MODIS data to assist in drought studies leading to water and food security assessments",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/15481603.2017.1290913"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85015631467"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Geographical distribution of traits and diversity in the world collection of pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] landraces conserved at the ICRISAT genebank"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10722-016-0442-8",
         "name": "Geographical distribution of traits and diversity in the world collection of pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] landraces conserved at the ICRISAT genebank",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/s10722-016-0442-8"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84986256923"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Geographical distribution, diversity and gap analysis of East African sorghum collection conserved at the ICRISAT genebank"
       },
       {
         "@type": "CreativeWork",
         "name": "Geographical distribution, diversity and gap analysis of East African sorghum collection conserved at the ICRISAT genebank"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.rse.2017.06.033",
         "name": "MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.rse.2017.06.033"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85021759504"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery"
       },
       {
         "@type": "CreativeWork",
         "name": "NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 South Asia, Afghanistan, Iran 30 m V001"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs9101065",
         "name": "Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs9101065"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85032864011"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Sorghum germplasm from West and Central Africa maintained in the ICRISAT genebank: Status, gaps, and diversity"
       },
       {
         "@type": "CreativeWork",
         "name": "Status, genetic diversity and gaps in sorghum germplasm from South Asia conserved at ICRISAT genebank"
       },
       {
         "@type": "CreativeWork",
         "name": "Agronomic management options for sustaining chickpea yield under climate change scenario",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-84978883281"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.18520/cs/v110/i9/1704-1709",
         "name": "Land use and agricultural change dynamics in SAT watersheds of southern India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84969584586"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.18520/cs/v110/i9/1704-1709"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/17538947.2016.1168489",
         "name": "Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250\u2005m time-series data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84965031268"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/17538947.2016.1168489"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w8060260",
         "name": "Prioritization of watersheds across mali using remote sensing data and GIS techniques for agricultural development planning",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/w8060260"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85010789861"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.12688/f1000research.8657.1",
         "name": "Priority regions for research on dryland cereals and legumes [version 1; referees: 2 approved]",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.12688/f1000research.8657.1"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85011003140"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.12688/f1000research.8657.2",
         "name": "Priority regions for research on dryland cereals and legumes [version 2; referees: 2 approved]",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85010957534"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.12688/f1000research.8657.2"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431161.2016.1165889",
         "name": "Satellite imagery and household survey for tracking chickpea adoption in Andhra Pradesh, India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/01431161.2016.1165889"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84963792063"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1017/s147926211600023x",
         "name": "Status, genetic diversity and gaps in sorghum germplasm from South Asia conserved at ICRISAT genebank",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84976417290"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1017/s147926211600023x"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "A map of lowland rice extent in the major rice growing countries of Asia"
       },
       {
         "@type": "CreativeWork",
         "name": "Global Food Security Support Analysis Data (GFSAD) at Nominal 1 km (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.14358/pers.81.11.873",
         "name": "Mapping direct seeded rice in Raichur district of Karnataka, India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84946406715"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.14358/pers.81.11.873"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.agsy.2014.08.014",
         "name": "Quantifying production losses due to drought and submergence of rainfed rice at the household level using remotely sensed MODIS data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84930182675"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.agsy.2014.08.014"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jenvman.2013.11.039",
         "name": "Remote sensing based change analysis of rice environments in Odisha, India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84918555197"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jenvman.2013.11.039"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10661-014-4155-1",
         "name": "Temporal change in land use by irrigation source in Tamil Nadu and management implications",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84925230842"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/s10661-014-4155-1"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/agriculture4020113",
         "name": "Crop dominance mapping with IRS-P6 and MODIS 250-m time series data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/agriculture4020113"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Hyperspectral remote sensing of vegetation and agricultural crops"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2014.2344630",
         "name": "Mapping Asian cropping intensity with MODIS",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/jstars.2014.2344630"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85027932562"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.isprsjprs.2014.02.007",
         "name": "Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84896308273"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.isprsjprs.2014.02.007"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10661-012-2810-y",
         "name": "Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/s10661-012-2810-y"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84876339341"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2013.2252601",
         "name": "Selection of hyperspectral narrowbands (hnbs) and composition of hyperspectral twoband vegetation indices (HVIS) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/jstars.2013.2252601"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84877902845"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-84868009667"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Ex ante impact assessment of a drought tolerant rice variety in the presence of climate change"
       },
       {
         "@type": "CreativeWork",
         "name": "Odisha: the future granary of India"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.agwat.2011.10.019",
         "name": "Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84855186644"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.agwat.2011.10.019"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431161003749485",
         "name": "Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna river basin (India)",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-79960058210"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/01431161003749485"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10795-011-9117-y",
         "name": "Expansion of urban area and wastewater irrigated rice area in Hyderabad, India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/s10795-011-9117-y"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84855975097"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w3010113",
         "name": "Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India)",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/w3010113"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs3040816",
         "name": "Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80052000321"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs3040816"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/1.3619838",
         "name": "Mapping rice areas of South Asia using MODIS multitemporal data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/1.3619838"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80054087663"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.agee.2011.06.010",
         "name": "Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80051593875"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.agee.2011.06.010"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs2010211",
         "name": "A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77954533035"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs2010211"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Delineating shallow ground water irrigated areas in the Atankwidi Watershed (Northern Ghana, Burkina Faso) using Quickbird 0.61-2.44 meter data"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1061/(asce)ir.1943-4774.0000225",
         "name": "Farmers\u2019 adaptation and regional land-use changes in irrigation systems under fluctuating water supply, south india",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1061/(asce)ir.1943-4774.0000225"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85001875213"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.isprsjprs.2009.08.004",
         "name": "Irrigated areas of India derived using MODIS 500 m time series for the years 2001-2003",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.isprsjprs.2009.08.004"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-73149083945"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jag.2008.11.002",
         "name": "A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-61849133417"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jag.2008.11.002"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431160802698919",
         "name": "Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/01431160802698919"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-70449436485"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Influence of resolution in irrigated area mapping and area estimation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-73949096178"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs1020050",
         "name": "Irrigated area maps and statistics of India using remote sensing and national statistics",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/rs1020050"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80051748961"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/1.3182847",
         "name": "Spatial models for selecting the most suitable areas of rice cultivation in the Inland valley wetlands of Ghana using remote sensing and geographic information systems",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/1.3182847"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-70449417425"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Vegetation phenology to partition groundwater from surface water-irrigated areas using MODIS 250-m time series data for the Krishna River basin, India",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-78751664245"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Vegetation phenology to partition groundwater-from surface-water-irrigated areas using MODIS 250-m time-series data for the Krishna River basin"
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/1.3257643",
         "name": "Water productivity mapping using remote sensing data of various resolutions to support \"more crop per drop\"",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/1.3257643"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77957294368"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/s8128156",
         "name": "Water productivity mapping (WPM) using landsat ETM+ data for the irrigated croplands of the Syrdarya river basin in Central Asia",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.3390/s8128156"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-58149185301"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1061/(asce)0733-9437(2008)134:1(26)",
         "name": "Water scarcity effects on equitable water distribution and land use in a major irrigation project - Case study in India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1061/(asce)0733-9437(2008)134:1(26)"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-38349127266"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Spectral matching techniques to determine historical Land-use/Land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR pathfinder datasets",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-36649033114"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Sub-pixel area calculation methods for estimating irrigated areas",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-36849042502"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431160600851801",
         "name": "Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1080/01431160600851801"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33749472628"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/bf02830797",
         "name": "Foreword",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-51649145903"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/bf02830797"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/bf00279465",
         "name": "Adsorption-desorption of atrazine on four soils of Hyderabad",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/bf00279465"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-0024045052"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty-first century: current achievements and future possibilities"
       },
       {
         "@type": "CreativeWork",
         "name": "van den, Laube W (2010) Shallow groundwater in the Atankwidi catchment of the White Volta Basin: current status and future sustainability"
       }
     ]
   },
   "url": "http://www.icrisat.org/team/murali-krishna-gumma/",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "Scopus Author ID",
       "value": "15020631200"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "Scopus Author ID",
       "value": "57203279842"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "Loop profile",
       "value": "1383179"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "SciProfiles",
       "value": "70345"
     }
   ]
 }

}