Item talk:Q139382
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5031350491", "orcid": "https://orcid.org/0000-0001-5728-9827", "display_name": "Belinda E. Medlyn", "display_name_alternatives": [ "B. E. Medlyn", "Belinda E. Medlyn", "B. Medlyn", "David S. Ellsworth", "Julie Messier", "Belinda Medlyn", "J Messier", "B.E Medlyn" ], "works_count": 395, "cited_by_count": 25705, "summary_stats": { "2yr_mean_citedness": 7.2075471698113205, "h_index": 76, "i10_index": 203 }, "ids": { "openalex": "https://openalex.org/A5031350491", "orcid": "https://orcid.org/0000-0001-5728-9827", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=6603835282&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I63525965", "ror": "https://ror.org/03t52dk35", "display_name": "Western Sydney University", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I63525965" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I151746483", "ror": "https://ror.org/01aff2v68", "display_name": "University of Waterloo", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I151746483" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I99043593", "ror": "https://ror.org/01sf06y89", "display_name": "Macquarie University", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I99043593" ] }, "years": [ 2022, 2021, 2019, 2018, 2016, 2015, 2014, 2013, 2012, 2011 ] }, { "institution": { "id": "https://openalex.org/I31746571", "ror": "https://ror.org/03r8z3t63", "display_name": "UNSW Sydney", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I31746571" ] }, "years": [ 2022, 2006, 2005, 2003, 2002, 2001, 1998, 1997, 1996, 1994 ] }, { "institution": { "id": "https://openalex.org/I129604602", "ror": "https://ror.org/0384j8v12", "display_name": "University of Sydney", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I129604602" ] }, "years": [ 2022, 2019 ] }, { "institution": { "id": "https://openalex.org/I86609021", "ror": "https://ror.org/02p9cyn66", "display_name": "Manaaki Whenua \u2013 Landcare Research", "country_code": "NZ", "type": "government", "lineage": [ "https://openalex.org/I2799419803", "https://openalex.org/I86609021" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I74801974", "ror": "https://ror.org/057zh3y96", "display_name": "The University of Tokyo", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I74801974" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I129902397", "ror": "https://ror.org/01e6qks80", "display_name": "Dalhousie University", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I129902397" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I203172682", "ror": "https://ror.org/0272j5188", "display_name": "Northern Arizona University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I203172682" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I69552723", "ror": "https://ror.org/00g0p6g84", "display_name": "University of Pretoria", "country_code": "ZA", "type": "education", "lineage": [ "https://openalex.org/I69552723" ] }, "years": [ 2022 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I63525965", "ror": "https://ror.org/03t52dk35", "display_name": "Western Sydney University", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I63525965" ] } ], "topics": [ { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 167, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "count": 104, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 47, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 47, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 36, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 25, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "count": 21, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10004", "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "count": 13, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10075", "display_name": "Atmospheric Aerosols and their Impacts", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12472", "display_name": "Plant Responses to Flooding Stress", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11753", "display_name": "Climate Change Impacts on Forest Carbon Sequestration", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10471", "display_name": "Economic Implications of Climate Change Policies", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2002", "display_name": "Economics and Econometrics" }, "field": { "id": "https://openalex.org/fields/20", "display_name": "Economics, Econometrics and Finance" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10303", "display_name": "Molecular Mechanisms of Photosynthesis and Photoprotection", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1312", "display_name": "Molecular Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11796", "display_name": "Genetic and Environmental Factors in Grapevine Cultivation", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10487", "display_name": "Impact of Pollinator Decline on Ecosystems and Agriculture", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T14468", "display_name": "Analysis of Land Cover and Ecosystems", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10435", "display_name": "Life Cycle Assessment and Environmental Impact Analysis", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "value": 0.0013072, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0008317, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0006077, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "value": 0.0001849, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 0.0001622, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 0.000118, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "value": 0.0001177, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0001057, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12472", "display_name": "Plant Responses to Flooding Stress", "value": 0.0001034, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 9.05e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 6.9e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "value": 6.5e-05, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10004", "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "value": 6.12e-05, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13377", "display_name": "Anticipating Critical Transitions in Ecosystems", "value": 5.91e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 5.61e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12643", "display_name": "Urban Metabolism and Sustainability Assessment", "value": 4.13e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10075", "display_name": "Atmospheric Aerosols and their Impacts", "value": 3.77e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13591", "display_name": "Management of Perennial Pasture Systems in Australia", "value": 3.14e-05, "subfield": { "id": "https://openalex.org/subfields/1107", "display_name": "Forestry" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T14468", "display_name": "Analysis of Land Cover and Ecosystems", "value": 3.01e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11596", "display_name": "Distributed Constraint Optimization Problems and Algorithms", "value": 2.89e-05, "subfield": { "id": "https://openalex.org/subfields/1705", "display_name": "Computer Networks and Communications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 2.79e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "value": 2.74e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10650", "display_name": "Drying and Dehydration of Food Products", "value": 2.71e-05, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11753", "display_name": "Climate Change Impacts on Forest Carbon Sequestration", "value": 2.49e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11264", "display_name": "Effects of Caffeine on Human Health", "value": 2.44e-05, "subfield": { "id": "https://openalex.org/subfields/2736", "display_name": "Pharmacology" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 86.8 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 78.5 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 77.7 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 65.6 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 61.8 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 60.8 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 58.7 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 48.1 }, { "id": "https://openalex.org/C55493867", "wikidata": "https://www.wikidata.org/wiki/Q7094", "display_name": "Biochemistry", "level": 1, "score": 45.3 }, { "id": "https://openalex.org/C183688256", "wikidata": "https://www.wikidata.org/wiki/Q11982", "display_name": "Photosynthesis", "level": 2, "score": 43.3 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 41.8 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 34.7 }, { "id": "https://openalex.org/C6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 33.9 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 33.2 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 29.9 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 27.8 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 27.3 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 26.1 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 25.3 }, { "id": "https://openalex.org/C132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 25.1 }, { "id": "https://openalex.org/C192562407", "wikidata": "https://www.wikidata.org/wiki/Q228736", "display_name": "Materials science", "level": 0, "score": 22.8 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 21.0 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 21.0 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 20.8 } ], "counts_by_year": [ { "year": 2024, "works_count": 10, "cited_by_count": 2310 }, { "year": 2023, "works_count": 22, "cited_by_count": 3532 }, { "year": 2022, "works_count": 34, "cited_by_count": 3415 }, { "year": 2021, "works_count": 19, "cited_by_count": 3523 }, { "year": 2020, "works_count": 31, "cited_by_count": 2731 }, { "year": 2019, "works_count": 34, "cited_by_count": 2883 }, { "year": 2018, "works_count": 43, "cited_by_count": 1620 }, { "year": 2017, "works_count": 21, "cited_by_count": 1436 }, { "year": 2016, "works_count": 23, "cited_by_count": 1253 }, { "year": 2015, "works_count": 40, "cited_by_count": 1233 }, { "year": 2014, "works_count": 16, "cited_by_count": 817 }, { "year": 2013, "works_count": 20, "cited_by_count": 737 }, { "year": 2012, "works_count": 15, "cited_by_count": 482 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5031350491", "updated_date": "2024-08-21T11:46:00.818360", "created_date": "2023-07-21", "_id": "https://openalex.org/A5031350491" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0001-5728-9827", "mainEntityOfPage": "https://orcid.org/0000-0001-5728-9827", "givenName": "Belinda", "familyName": "Medlyn", "alumniOf": [ { "@type": "Organization", "name": "University of New South Wales", "alternateName": "Biological, Earth and Environmental Sciences", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "7800" } }, { "@type": "Organization", "name": "University of Adelaide", "alternateName": "Mathematics", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1066" } } ], "affiliation": [ { "@type": "Organization", "name": "Western Sydney University - Hawkesbury Campus", "alternateName": "Hawkesbury Institute for the Environment", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "89380" } }, { "@type": "Organization", "name": "Macquarie University", "alternateName": "Biological Sciences", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "7788" } }, { "@type": "Organization", "name": "University of New South Wales", "alternateName": "Biological Sciences", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "7800" } }, { "@type": "Organization", "name": "University of Edinburgh", "alternateName": "Institute of Ecology & Resource Management", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3124" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/sciadv.adl5822", "name": "Carbon-phosphorus cycle models overestimate CO 2 enrichment response in a mature Eucalyptus forest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/sciadv.adl5822" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/geb.13842", "name": "Demographic change and loss of big trees in resprouting eucalypt forests exposed to megadisturbance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/geb.13842" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/ece3.11517", "name": "Environmental correlates of the forest carbon distribution in the Central Himalayas", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ece3.11517" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/f15050801", "name": "Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f15050801" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.foreco.2023.121679", "name": "Disentangling contributions of allometry, species composition and structure to high aboveground biomass density of high-elevation forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.foreco.2023.121679" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85181946776" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-023-01867-2", "name": "A constraint on historic growth in global photosynthesis due to rising CO2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-023-01867-2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178129113" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/sciadv.adh9444", "name": "Higher global gross primary productivity under future climate with more advanced representations of photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85176917091" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/sciadv.adh9444" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr033449", "name": "Changes in Blue/Green Water Partitioning Under Severe Drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85175986258" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr033449" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16929", "name": "Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85170711866" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16929" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jg006818", "name": "Limited Evidence of Cumulative Effects From Recurrent Droughts in Vegetation Responses to Australia's Millennium Drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg006818" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85160410309" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2435.14271", "name": "Specific leaf area and vapour pressure deficit control live fuel moisture content", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85147522186" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2435.14271" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2139/ssrn.4555340", "name": "Disentangling Contributions of Allometry, Species Composition and Structure to High Carbon Density of High Elevation Forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2139/ssrn.4555340" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85169427598" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2022.109252", "name": "Green-up and brown-down: Modelling grassland foliage phenology responses to soil moisture availability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2022.109252" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85149840841" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-023-34247-z", "name": "Mapping soil organic carbon stocks in Nepal\u2019s forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85159777613" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-023-34247-z" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18618", "name": "Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18618" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85144100878" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2664.14486", "name": "Predicting sub-continental fuel hazard under future climate and rising atmospheric CO2 concentration", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85170390892" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2664.14486" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.21203/rs.3.rs-2616997/v1", "name": "Quantification of soil organic carbon stocks in Nepal's forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.21203/rs.3.rs-2616997/v1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85167547077" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2023.06.16.545047", "name": "The AusTraits Plant Dictionary", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85166743939" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2023.06.16.545047" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/geb.13548", "name": "The carbon cost of the 2019\u201320 Australian fires varies with fire severity and forest type", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85130681550" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/geb.13548" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.14376", "name": "Predicting resilience through the lens of competing adjustments to vegetation function", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.14376" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85133445998" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18129", "name": "Towards species\u2010level forecasts of drought\u2010induced tree mortality risk", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85128561823" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18129" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-022-04869-w", "name": "Retraction Note: A constraint on historic growth in global photosynthesis due to increasing CO2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-022-04869-w" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85131053175" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2022.108941", "name": "Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127800264" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2022.108941" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18077", "name": "Tropical rainforest species have larger increases in temperature optima with warming than warm\u2010temperate rainforest trees", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127230333" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18077" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpab096", "name": "Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85123708312" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpab096" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021ms002761", "name": "One Stomatal Model to Rule Them All? Toward Improved Representation of Carbon and Water Exchange in Global Models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ms002761" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85128552639" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16141", "name": "Bridge to the future: Important lessons from 20\u00a0years of ecosystem observations made by the OzFlux network", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16141" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126795276" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-022-24833-y", "name": "Canopy dieback and recovery in Australian native forests following extreme drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-022-24833-y" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85144225933" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-022-32545-0", "name": "Convergence in phosphorus constraints to photosynthesis in forests around the world", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-022-32545-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85136692408" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-26-6073-2022", "name": "Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85145436674" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-26-6073-2022" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2139/ssrn.4107047", "name": "Green-Up and Brown-Down: Modelling Grassland Foliage Phenology Responses to Soil Moisture Availability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2139/ssrn.4107047" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85179538891" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.14318", "name": "High safety margins to drought-induced hydraulic failure found in five pasture grasses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.14318" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127564307" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-15-5567-2022", "name": "Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85134894293" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-15-5567-2022" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s43017-022-00272-1", "name": "Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126847182" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s43017-022-00272-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.14265", "name": "Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85124583752" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.14265" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fpls.2022.836968", "name": "Pastures and Climate Extremes: Impacts of Cool Season Warming and Drought on the Productivity of Key Pasture Species in a Field Experiment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fpls.2022.836968" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85127238459" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2022.112983", "name": "Satellite-observed shifts in C3/C4 abundance in Australian grasslands are associated with rainfall patterns", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2022.112983" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125933494" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fpls.2022.822136", "name": "The Role of Hydraulic Failure in a Massive Mangrove Die-Off Event", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fpls.2022.822136" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85130149803" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-19-491-2022", "name": "Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-19-491-2022" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85124100617" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-021-04096-9", "name": "\ufeff RETRACTED ARTICLE: A constraint on historic growth in global photosynthesis due to increasing CO2", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85120896145" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-021-04096-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15788", "name": "Patterns of post\u2010drought recovery are strongly influenced by drought duration, frequency, post\u2010drought wetness, and bioclimatic setting", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85110368259" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15788" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17540", "name": "To what extent can rising [CO2] ameliorate plant drought stress?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17540" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85111531931" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15590", "name": "Increasing aridity will not offset CO2 fertilization in fast\u2010growing eucalypts with access to deep soil water", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103190045" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15590" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17233", "name": "Drought by CO2 interactions in trees: a test of the water savings mechanism", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85101458783" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17233" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17298", "name": "Hydraulic failure and tree size linked with canopy die\u2010back in eucalypt forest during extreme drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103879072" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17298" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17092", "name": "Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17092" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097610486" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16866", "name": "Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16866" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85092938048" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2021.101232", "name": "A reporting format for leaf-level gas exchange data and metadata", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2021.101232" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85100076204" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2139/ssrn.3987846", "name": "Seasonal Dynamics of Canopy Properties and Ecosystem Fluxes in a Temperate Evergreen Angiosperm Forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2139/ssrn.3987846" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85178546247" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16746", "name": "Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16746" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85088428448" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/agronomy10101601", "name": "Warming Reduces Net Carbon Gain and Productivity in Medicago sativa L. and Festuca arundinacea", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/agronomy10101601" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85094635961" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15215", "name": "Identifying areas at risk of drought\u2010induced tree mortality across South\u2010Eastern Australia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15215" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089480087" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2020.08.19.258186", "name": "Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102908964" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2020.08.19.258186" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16376", "name": "Plant profit maximization improves predictions of European forest responses to drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85078808895" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16376" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16419", "name": "Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85079733017" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16419" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-020-2128-9", "name": "The fate of carbon in a mature forest under carbon dioxide enrichment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85084005156" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-020-2128-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14975", "name": "The temperature optima for tree seedling photosynthesis and growth depend on water inputs", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85079045492" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14975" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019jg005145", "name": "Drought Impacts on Australian Vegetation During the Millennium Drought Measured With Multisource Spaceborne Remote Sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jg005145" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85080142872" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14866", "name": "Water\u2010use efficiency in a semi\u2010arid woodland with high rainfall variability", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074775588" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14866" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/f11070779", "name": "Linking forest flammability and plant vulnerability to drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/f11070779" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089730017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15277", "name": "Low phosphorus supply constrains plant responses to elevated CO2: A meta-analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85088804268" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15277" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-17-265-2020", "name": "Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-17-265-2020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85078447069" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16207", "name": "Optimal stomatal drought response shaped by competition for water and hydraulic risk can explain plant trait covariation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16207" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074585013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2020.12.21.423155", "name": "Pastures and Climate Extremes: Impacts of cool season warming and drought on the productivity of key pasture species in a field experiment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85124063869" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2020.12.21.423155" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14904", "name": "TRY plant trait database \u2013 enhanced coverage and open access", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14904" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075196338" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.13639", "name": "No evidence for triose phosphate limitation of light\u2010saturated leaf photosynthesis under current atmospheric CO2 concentration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.13639" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070903373" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16042", "name": "Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070500342" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16042" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14634", "name": "Observed and modelled historical trends in the water\u2010use efficiency of plants and ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85065294003" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14634" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14604", "name": "Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063273581" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14604" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15688", "name": "Towards a more physiological representation of vegetation phosphorus processes in land surface models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061768840" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15688" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15668", "name": "Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061240700" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15668" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/erz020", "name": "A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/erz020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062890824" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-019-08348-1", "name": "Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-019-08348-1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061620961" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15395", "name": "On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052447036" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15395" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-019-0404-9", "name": "Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-019-0404-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070223216" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fpls.2018.01965", "name": "Bridging drought experiment and modeling: Representing the differential sensitivities of leaf gas exchange to drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fpls.2018.01965" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062811940" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpz016", "name": "Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068678895" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpz016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp18238", "name": "Drought tolerance traits do not vary across sites differing in water availability in Banksia serrata (Proteaceae)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp18238" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064122043" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-16-903-2019", "name": "Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-16-903-2019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062224110" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpz103", "name": "Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85078463557" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpz103" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2435.13320", "name": "More than iso/anisohydry: Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2435.13320" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064015256" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fpls.2019.00664", "name": "Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fpls.2019.00664" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068442849" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/696898", "name": "The fate of carbon in a mature forest under carbon dioxide enrichment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/696898" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85095628090" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-12-2069-2019", "name": "The quasi-equilibrium framework revisited: Analyzing long-term CO2 enrichment responses in plant-soil models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85066837864" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-12-2069-2019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15495", "name": "The validity of optimal leaf traits modelled on environmental conditions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15495" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85055695430" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/2041-210x.13092", "name": "Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/2041-210x.13092" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054558539" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2017ms001169", "name": "Applying the Concept of Ecohydrological Equilibrium to Predict Steady State Leaf Area Index", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052486959" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2017ms001169" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14037", "name": "Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14037" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041181230" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13893", "name": "Towards physiologically meaningful water\u2010use efficiency estimates from eddy covariance data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13893" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041375135" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-15-4003-2018", "name": "Inferring the effects of sink strength on plant carbon balance processes from experimental measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-15-4003-2018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85049604263" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-15-4245-2018", "name": "Large but decreasing effect of ozone on the European carbon sink", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-15-4245-2018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85049944982" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15100", "name": "Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15100" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045206952" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2018.02.005", "name": "Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042500821" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2018.02.005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14988", "name": "Monitoring global tree mortality patterns and trends. Report from the VW symposium \u2018Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health\u2019", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14988" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040735853" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14848", "name": "New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14848" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85033223605" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-11-3159-2018", "name": "The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051416513" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-11-3159-2018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.13129", "name": "Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.13129" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041048893" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-018-0240-x", "name": "Triggers of tree mortality under drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-018-0240-x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85049173014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-15-3703-2018", "name": "Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048738700" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-15-3703-2018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpy052", "name": "Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052711483" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpy052" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13771", "name": "A common thermal niche among geographically diverse populations of the widely distributed tree species Eucalyptus tereticornis: No evidence for adaptation to climate\u2010of\u2010origin", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13771" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021855947" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14283", "name": "A roadmap for improving the representation of photosynthesis in Earth system models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14283" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84997173271" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/geb.12635", "name": "Biome-specific climatic space defined by temperature and precipitation predictability", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85030173007" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/geb.12635" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13643", "name": "Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014453179" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13643" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate3235", "name": "Elevated CO<inf>2</inf> does not increase eucalypt forest productivity on a low-phosphorus soil", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate3235" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017095581" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13602", "name": "Gross primary production responses to warming, elevated CO2, and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017405017" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13602" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14626", "name": "How do leaf and ecosystem measures of water-use efficiency compare?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14626" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020134074" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-14-4435-2017", "name": "Ideas and perspectives: How coupled is the vegetation to the boundary layer?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032195053" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-14-4435-2017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.12964", "name": "Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.12964" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021262986" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/0028825x.2016.1240092", "name": "Leaf age-related and diurnal variation in gas exchange of kauri (Agathis australis)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991030700" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/0028825x.2016.1240092" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14841", "name": "Profile", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85136439624" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14841" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpx038", "name": "Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpx038" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85031915164" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2017.08.026", "name": "Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2017.08.026" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85028728698" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14288", "name": "The response of ecosystem water-use efficiency to rising atmospheric CO<inf>2</inf> concentrations: sensitivity and large-scale biogeochemical implications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84999622505" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14288" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-14-145-2017", "name": "Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-14-145-2017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85009436138" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13815", "name": "A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13815" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84952837278" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2435.12532", "name": "Conserved stomatal behaviour under elevated CO<inf>2</inf> and varying water availability in a mature woodland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84940534785" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2435.12532" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13978", "name": "Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13978" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978160181" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13715", "name": "Drought\u00a0\u00d7\u00a0CO<inf>2</inf> interactions in trees: A test of the low-intercellular CO<inf>2</inf> concentration (C<inf>i</inf>) mechanism", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13715" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946082124" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/srep23418", "name": "Impact of the representation of stomatal conductance on model projections of heatwave intensity", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84961753640" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/srep23418" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/aob/mcv161", "name": "Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84954547983" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/aob/mcv161" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13593", "name": "Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13593" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949316531" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14082", "name": "New developments in the effort to model ecosystems under water stress", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983605983" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14082" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jtbi.2016.01.003", "name": "Optimal stomatal behaviour under stochastic rainfall", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84956708504" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jtbi.2016.01.003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate3105", "name": "Satellite based estimates underestimate the effect of CO<inf>2</inf> fertilization on net primary productivity", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84989173798" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate3105" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13268", "name": "Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85027958340" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13268" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-12-12349-2015", "name": "Do land surface models need to include differential plant species responses to drought? Examining model predictions across a latitudinal gradient in Europe", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-12-12349-2015" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-12-12349-2015-supplement", "name": "Supplementary material to "Do land surface models need to include differential plant species responses to drought? Examining model predictions across a latitudinal gradient in Europe"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-12-12349-2015-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmdd-8-5235-2015", "name": "Implementation of an optimal stomatal conductance model in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmdd-8-5235-2015" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-8-431-2015", "name": "A test of an optimal stomatal conductance scheme within the CABLE land surface model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-8-431-2015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923766666" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/aobpla/plu074", "name": "Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/aobpla/plu074" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84939814895" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-12-7503-2015", "name": "Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84951805429" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-12-7503-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.12962", "name": "Does the growth response of woody plants to elevated CO<inf>2</inf> increase with temperature? A model-oriented meta-analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12962" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84947039408" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13205", "name": "Drought and resprouting plants", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13205" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84925279180" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/ece3.1733", "name": "Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039716203" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ece3.1733" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2745.12337", "name": "Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84921931327" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.12337" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13253", "name": "Global variability in leaf respiration in relation to climate, plant functional types and leaf traits", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84925273030" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13253" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/14-2111.1", "name": "Global-scale environmental control of plant photosynthetic capacity", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/14-2111.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941918324" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-8-3877-2015", "name": "Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949571180" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-8-3877-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate2550", "name": "Optimal stomatal behaviour around the world", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate2550" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84928526047" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13291", "name": "Photosynthetic temperature responses of tree species in Rwanda: Evidence of pronounced negative effects of high temperature in montane rainforest climax species", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13291" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84926528115" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014gb004995", "name": "Predicting long-term carbon sequestration in response to CO<inf>2</inf> enrichment: How and why do current ecosystem models differ?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84929074334" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014gb004995" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-15-5987-2015", "name": "Reliable, robust and realistic: The three R's of next-generation land-surface modelling", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84934878604" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-15-5987-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate2621", "name": "Using ecosystem experiments to improve vegetation models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84929783311" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate2621" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12770", "name": "A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO<inf>2</inf>", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84901618219" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12770" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2013jg002553", "name": "Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84902436589" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013jg002553" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12697", "name": "Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12697" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84898023853" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12972", "name": "Improving representation of photosynthesis in Earth System Models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12972" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906504490" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-11-1817-2014", "name": "Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-1817-2014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84897978455" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acpd-14-24811-2014", "name": "Reliable, robust and realistic: The three R's of next-generation land surface modelling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acpd-14-24811-2014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84937947884" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpu072", "name": "Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923490093" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpu072" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2013.12.007", "name": "The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2013.12.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84893143247" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12847", "name": "Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12847" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904018496" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2435.12102", "name": "A trait-based ecosystem model suggests that long-term responsiveness to rising atmospheric CO<inf>2</inf> concentration is greater in slow-growing than fast-growing plants", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2435.12102" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880751522" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/aob/mct206", "name": "A unifying conceptual model for the environmental responses of isoprene emissions from plants", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84889850908" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/aob/mct206" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpt047", "name": "Biochemical photosynthetic responses to temperature: How do interspecific differences compare with seasonal shifts?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887912675" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpt047" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nature12411", "name": "Biogeochemistry: Carbon dioxide and water use in forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature12411" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880509065" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.9280", "name": "Developing an empirical model of canopy water flux describing the common response of transpiration to solar radiation and VPD across five contrasting woodlands and forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.9280" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84875645386" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.12164", "name": "Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12164" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84877082704" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2013.05.009", "name": "How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2013.05.009" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885182775" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2012.09.005", "name": "Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO<inf>2</inf>] in cotton (Gossypium hirsutum L.)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867634971" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2012.09.005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-3040.2012.02570.x", "name": "Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84871922406" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-3040.2012.02570.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.12314", "name": "Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO<inf>2</inf> and climate warming", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887559187" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12314" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2013.04.019", "name": "The optimal stomatal response to atmospheric CO<inf>2</inf> concentration: Alternative solutions, alternative interpretations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2013.04.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885310925" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12021", "name": "Volatile isoprenoid emissions from plastid to planet", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870254047" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpt014", "name": "Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO<inf>2</inf>] and temperature conditions?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84890256421" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpt014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tps023", "name": "Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tps023" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861635941" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2012.02790.x", "name": "Corrigendum: Reconciling the optimal and empirical approaches to modelling stomatal conductance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2012.02790.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867145580" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2011.02526.x", "name": "Effects of elevated atmospheric [CO 2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84855835101" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2011.02526.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1469-8137.2011.03943.x", "name": "Light interception efficiency explained by two simple variables: A test using a diversity of small- to medium-sized woody plants", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84155162377" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1469-8137.2011.03943.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-5-919-2012", "name": "MAESPA: A model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO<inf>2</inf>] \u00d7 drought interactions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876240219" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-5-919-2012" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1469-8137.2011.03993.x", "name": "Nocturnal stomatal conductance responses to rising [CO <inf>2</inf>], temperature and drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1469-8137.2011.03993.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856516425" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/ece3.266", "name": "Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ece3.266" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872157213" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpr141", "name": "Temperature responses of leaf net photosynthesis: The role of component processes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpr141" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860616850" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/science.1199544", "name": "Comment on \"Drought-induced reduction in global terrestrial net primary production from 2000 through 2009\"", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.1199544" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80052161495" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/wcc.108", "name": "Forest productivity under climate change: A checklist for evaluating model studies", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wcc.108" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79961221510" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpr024", "name": "Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053274481" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpr024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpr048", "name": "Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): Effects of thinning and weeding in the early stage of tree growth", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053276827" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpr048" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2010.02375.x", "name": "Reconciling the optimal and empirical approaches to modelling stomatal conductance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2010.02375.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955035036" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpr030", "name": "Rooting depth explains [CO <inf>2</inf>]\u00d7 drought interaction in Eucalyptus saligna", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpr030" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053263284" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2011.02451.x", "name": "TRY - a global database of plant traits", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2011.02451.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79957965204" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1006463107", "name": "CO2enhancement of forest productivity constrained by limited nitrogen availability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1006463107" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650602092" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-3040.2010.02201.x", "name": "Soil [N] modulates soil C cycling in CO<inf>2</inf>-fumigated tree stands: A meta-analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-3040.2010.02201.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78349243251" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.2009.02102.x", "name": "The effect of nitrogen deposition on forest carbon sequestration: A model-based analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77953101248" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2009.02102.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2010.03.001", "name": "Whole-tree chambers for elevated atmospheric CO<inf>2</inf> experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2010.03.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954815130" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2009.04.036", "name": "Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2009.04.036" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-66949148009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2008.10.002", "name": "Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2008.10.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-59249087704" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp08125", "name": "Mechanisms linking plant productivity and water status for a temperate Eucalyptus forest flux site: Analysis over wet and dry years with a simple model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-49149085317" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp08125" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp08128", "name": "Why is plant-growth response to elevated CO<inf>2</inf> amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp08128" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-49149110448" } ] }, { "@type": "CreativeWork", "name": "Issues in Modelling Plant Ecosystem Responses to Elevated CO2: Interactions with Soil Nitrogen", "identifier": [ { "@type": "PropertyValue", "propertyID": "isbn", "value": "1405131926" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84889290947" } ], "sameAs": "https://www.worldcat.org/isbn/1405131926" }, { "@type": "CreativeWork", "name": "Linking leaf and tree water use with an individual-tree model", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-37849031479" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/26.7.845", "name": "A comparative analysis of simulated and observed photosynthetic CO <inf>2</inf> uptake in two coniferous forest canopies", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33746862094" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/26.7.845" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2005.05.004", "name": "Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-22444448097" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2005.05.004" } ] }, { "@type": "CreativeWork", "name": "Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-16244408348" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/25.7.839", "name": "On the validation of models of forest CO2 exchange using eddy covariance data: Some perils and pitfalls", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-22344449770" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/25.7.839" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp02088", "name": "Conversion of canopy intercepted radiation to photosynthate: Review of modelling approaches for regional scales", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037218409" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp02088" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp02088_co", "name": "Erratum: Conversion of canopy intercepted radiation to photosynthate: A review of modelling approaches for regional scales (Functional Plant Biology 30: 2 (153-169))", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0042352259" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp02088_co" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/fp02152", "name": "On the importance of including soil nutrient feedback effects for predicting ecosystem carbon exchange", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/fp02152" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037218475" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-3040.2002.00890.x", "name": "Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036712723" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-3040.2002.00890.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-3040.2002.00891.x", "name": "Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-18544364882" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-3040.2002.00891.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/1051-0761(2001)011[0239:gppidf]2.0.co;2", "name": "Gross primary productivity in duke forest: Modeling synthesis of co2 experiment and eddy-flux data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035147670" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/1051-0761(2001)011[0239:gppidf]2.0.co;2" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/21.12-13.831", "name": "Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/21.12-13.831" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034819529" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1469-8137.2001.00028.x", "name": "Stomatal conductance of forest species after long-term exposure to elevated CO<inf>2</inf> concentration: A synthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1469-8137.2001.00028.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035119304" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1023/a:1004711707787", "name": "Effects of elevated [CO<inf>2</inf>] on forest growth and carbon storage: A modelling analysis of the consequences of changes in litter quality/quantity and root exudation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033820903" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/a:1004711707787" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1139/cjfr-30-6-873", "name": "Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/cjfr-30-6-873" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033827868" } ] }, { "@type": "CreativeWork", "name": "Acclimation of the to respiration/photosynthesis raio to temperature insights from a model", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646936284" } }, { "@type": "CreativeWork", "name": "Comment on the article by R. H. Waring, J. J. Landsberg and M. Williams relating net primary production to gross primary production", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033043793" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0304-3800(99)00148-9", "name": "Design and use of a database of model parameters from elevated [CO<inf>2</inf>] experiments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0304-3800(99)00148-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033486021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-3040.1999.00523.x", "name": "Effects of elevated [CO<inf>2</inf>] on photosynthesis in European forest species: A meta-analysis of model parameters", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033400943" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-3040.1999.00523.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-3040.1998.00311.x", "name": "A mechanistic analysis of light and carbon use efficiencies", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-3040.1998.00311.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031825286" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-2486.1998.00103.x", "name": "Modelling forest-growth response to increasing CO<inf>2</inf> concentration in relation to various factors affecting nutrient supply", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2486.1998.00103.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031891303" } ] }, { "@type": "CreativeWork", "name": "Physiological basis of the light use efficiency model", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031921183" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2486.1996.tb00087.x", "name": "A model of the long-term response of carbon allocation and productivity of forests to increased CO2 concentration and nitrogen deposition", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030428007" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.1996.tb00087.x" } ] }, { "@type": "CreativeWork", "name": "Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light use efficiency: A modeling analysis", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0000543759" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/pp9960593", "name": "The optimal allocation of nitrogen within the C<inf>3</inf> photosynthetic system at elevated CO<inf>2</inf>", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/pp9960593" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030458026" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-3040.1994.tb02007.x", "name": "Modelling forest response to increasing CO<inf>2</inf> concentration under nutrient\u2010limited conditions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028176425" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-3040.1994.tb02007.x" } ] } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "6603835282" } }
}