Item talk:Q139276
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5023805749", "orcid": "https://orcid.org/0000-0002-8882-1908", "display_name": "Scott Steinschneider", "display_name_alternatives": [ "S. Steinschneider", "Scott Steinschneider" ], "works_count": 177, "cited_by_count": 2404, "summary_stats": { "2yr_mean_citedness": 3.9655172413793105, "h_index": 26, "i10_index": 54 }, "ids": { "openalex": "https://openalex.org/A5023805749", "orcid": "https://orcid.org/0000-0002-8882-1908" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I205783295", "ror": "https://ror.org/05bnh6r87", "display_name": "Cornell University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I205783295" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017 ] }, { "institution": { "id": "https://openalex.org/I4210142152", "ror": "https://ror.org/04fa4r544", "display_name": "ORCID", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210142152" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I4210162911", "ror": "https://ror.org/05jvg6713", "display_name": "Hollister (United States)", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I4210162911" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I206597221", "ror": "https://ror.org/0373nm262", "display_name": "Kongju National University", "country_code": "KR", "type": "education", "lineage": [ "https://openalex.org/I206597221" ] }, "years": [ 2019 ] }, { "institution": { "id": "https://openalex.org/I78577930", "ror": "https://ror.org/00hj8s172", "display_name": "Columbia University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I78577930" ] }, "years": [ 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I24603500", "ror": "https://ror.org/0072zz521", "display_name": "University of Massachusetts Amherst", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I24603500" ] }, "years": [ 2015, 2014, 2013, 2012, 2011, 2010 ] }, { "institution": { "id": "https://openalex.org/I177605424", "ror": "https://ror.org/028vqfs63", "display_name": "Amherst College", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I177605424" ] }, "years": [ 2014 ] }, { "institution": { "id": "https://openalex.org/I4210112134", "ror": "https://ror.org/01v6rb042", "display_name": "New Orleans Public Library", "country_code": "US", "type": "archive", "lineage": [ "https://openalex.org/I4210112134" ] }, "years": [ 2011, 2010 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I205783295", "ror": "https://ror.org/05bnh6r87", "display_name": "Cornell University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I205783295" ] }, { "id": "https://openalex.org/I4210142152", "ror": "https://ror.org/04fa4r544", "display_name": "ORCID", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210142152" ] } ], "topics": [ { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 78, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 56, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 55, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "count": 44, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 43, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 19, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11483", "display_name": "Tropical Cyclone Intensity and Climate Change", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11185", "display_name": "Integration of Renewable Energy Systems in Power Grids", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10302", "display_name": "Importance and Conservation of Freshwater Biodiversity", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10424", "display_name": "Electricity Market Operation and Optimization", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11052", "display_name": "Electricity Price and Load Forecasting Methods", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11807", "display_name": "Assessment and Enhancement of Infrastructure Resilience", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10647", "display_name": "Coastal Dynamics and Climate Change Impacts", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10471", "display_name": "Economic Implications of Climate Change Policies", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2002", "display_name": "Economics and Econometrics" }, "field": { "id": "https://openalex.org/fields/20", "display_name": "Economics, Econometrics and Finance" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11976", "display_name": "Application of Real Options in Investment Strategies", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2003", "display_name": "Finance" }, "field": { "id": "https://openalex.org/fields/20", "display_name": "Economics, Econometrics and Finance" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 0.0005408, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 0.000242, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "value": 0.0002403, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 0.0002191, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 0.0001933, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0001551, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "value": 0.0001458, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "value": 0.0001125, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11483", "display_name": "Tropical Cyclone Intensity and Climate Change", "value": 0.0001021, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 9.72e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "value": 9.24e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14296", "display_name": "Climate Change and Sustainable Development", "value": 8.27e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11807", "display_name": "Assessment and Enhancement of Infrastructure Resilience", "value": 7.92e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "value": 6.61e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11185", "display_name": "Integration of Renewable Energy Systems in Power Grids", "value": 5.72e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 4.98e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "value": 4.71e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10424", "display_name": "Electricity Market Operation and Optimization", "value": 3.88e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11331", "display_name": "Waterborne Disease Outbreaks and Pathogen Transport", "value": 3.64e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11052", "display_name": "Electricity Price and Load Forecasting Methods", "value": 3.37e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "value": 3.28e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "value": 3.09e-05, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "value": 2.89e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11976", "display_name": "Application of Real Options in Investment Strategies", "value": 2.53e-05, "subfield": { "id": "https://openalex.org/subfields/2003", "display_name": "Finance" }, "field": { "id": "https://openalex.org/fields/20", "display_name": "Economics, Econometrics and Finance" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T11413", "display_name": "Robust Optimization for Risk Management and Finance", "value": 2.14e-05, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 88.7 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 85.3 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 77.4 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 75.7 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 68.9 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 65.5 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 64.4 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 63.3 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 59.3 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 54.8 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 50.3 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 49.7 }, { "id": "https://openalex.org/C132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 49.2 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 45.2 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 41.8 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 34.5 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 33.3 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 33.3 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 33.3 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 31.6 }, { "id": "https://openalex.org/C107054158", "wikidata": "https://www.wikidata.org/wiki/Q25257", "display_name": "Precipitation", "level": 2, "score": 31.6 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 28.8 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 27.1 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 24.3 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 23.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 10, "cited_by_count": 337 }, { "year": 2023, "works_count": 20, "cited_by_count": 426 }, { "year": 2022, "works_count": 18, "cited_by_count": 308 }, { "year": 2021, "works_count": 11, "cited_by_count": 366 }, { "year": 2020, "works_count": 20, "cited_by_count": 274 }, { "year": 2019, "works_count": 22, "cited_by_count": 220 }, { "year": 2018, "works_count": 17, "cited_by_count": 144 }, { "year": 2017, "works_count": 13, "cited_by_count": 132 }, { "year": 2016, "works_count": 8, "cited_by_count": 126 }, { "year": 2015, "works_count": 10, "cited_by_count": 62 }, { "year": 2014, "works_count": 7, "cited_by_count": 29 }, { "year": 2013, "works_count": 6, "cited_by_count": 13 }, { "year": 2012, "works_count": 6, "cited_by_count": 6 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5023805749", "updated_date": "2024-08-24T10:53:14.340328", "created_date": "2023-07-21", "_id": "https://openalex.org/A5023805749" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-8882-1908", "mainEntityOfPage": "https://orcid.org/0000-0002-8882-1908", "givenName": "Scott", "familyName": "Steinschneider", "affiliation": { "@type": "Organization", "name": "Cornell University", "alternateName": "Biological and Environmental Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/05bnh6r87" } }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-2023-1744", "name": "On the need for physical constraints in deep learning rainfall-runoff projections under climate change", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-2023-1744" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.watres.2023.120202", "name": "Climate change effects on denitrification performance of woodchip bioreactors treating agricultural tile drainage", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.watres.2023.120202" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85162081402" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00382-022-06302-4", "name": "A multi-objective paleo-informed reconstruction of western US weather regimes over the past 600 years", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00382-022-06302-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85130561012" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/aws2.1321", "name": "Characterization and drivers of haloacetic acids in New York State", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/aws2.1321" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85149938296" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023gl104606", "name": "Extreme Precipitation-Temperature Scaling in California: The Role of Atmospheric Rivers", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023gl104606" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85165773709" } ] }, { "@type": "CreativeWork", "name": "Heterogeneous Vulnerability of Zero-Carbon Power Grids under Climate-Technological Changes", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85167898296" } }, { "@type": "CreativeWork", "name": "Quantifying the multi-scale and multi-resource impacts of large-scale adoption of renewable energy sources", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85167954843" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jd038321", "name": "Six Hundred Years of Reconstructed Atmospheric River Activity Along the US West Coast", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jd038321" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85163674276" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr032201", "name": "Stochastic Watershed Model Ensembles for Long-Range Planning: Verification and Validation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr032201" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85148755199" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr032349", "name": "Uncertainty Decomposition to Understand the Influence of Water Systems Model Error in Climate Vulnerability Assessments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr032349" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85147138851" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jc019012", "name": "Understanding the Natural Variability of Still Water Levels in the San Francisco Bay Over the Past 500\u00a0yr: Implications for Future Coastal Flood Risk", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jc019012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85148873016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr032123", "name": "Assessing the Physical Realism of Deep Learning Hydrologic Model Projections Under Climate Change", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85138879123" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr032123" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr031115", "name": "A Bayesian Approach to Recreational Water Quality Model Validation and Comparison in the Presence of Measurement Error", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85123599547" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr031115" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-022-33760-5", "name": "A predictive computational platform for optimizing the design of bioartificial pancreas devices", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85139938812" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-022-33760-5" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0001493", "name": "Bias Correction of Hydrologic Projections Strongly Impacts Inferred Climate Vulnerabilities in Institutionally Complex Water Systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0001493" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118920024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr031863", "name": "Characterization of Multi-Scale Fluvial Suspended Sediment Transport Dynamics Across the United States Using Turbidity and Dynamic Regression", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85141717303" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr031863" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0001557", "name": "Characterizing Hydrologic Vulnerability under Nonstationary Climate and Antecedent Conditions Using a Process-Informed Stochastic Weather Generator", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85128260717" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0001557" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0001585", "name": "Establishing Opportunities and Limitations of Forecast Use in the Operational Management of Highly Constrained Multiobjective Water Systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85131576333" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0001585" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021wr031910", "name": "Leveraging Spatial Patterns in Precipitation Forecasts Using Deep Learning to Support Regional Water Management", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021wr031910" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85138878147" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-21-0183.1", "name": "Observed and Projected Scaling of Daily Extreme Precipitation with Dew Point Temperature at Annual and Seasonal Scales across the Northeastern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-21-0183.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85130755614" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gl097100", "name": "Precipitation Scaling With Temperature in the Northeast US: Variations by Weather Regime, Season, and Precipitation Intensity", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85129012511" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gl097100" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/science.abj4017", "name": "Reducing adverse impacts of Amazon hydropower expansion", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.abj4017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85124779691" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr029453", "name": "A Multivariate Approach to Generate Synthetic Short-To-Medium Range Hydro-Meteorological Forecasts Across Locations, Variables, and Lead Times", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr029453" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108670381" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1752-1688.12893", "name": "A Probabilistic, Parcel-Level Inundation Prediction Tool for Medium-Range Flood Forecasting in Large Lake Systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097904434" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1752-1688.12893" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jglr.2021.03.007", "name": "A hierarchical Bayesian model of storm surge and total water levels across the Great Lakes shoreline \u2013 Lake Ontario", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jglr.2021.03.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103725355" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/wcas-d-20-0098.1", "name": "Assessing aircraft performance in a warming climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85099752818" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/wcas-d-20-0098.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/wcas-d-20-0167.1", "name": "Corrigendum to:(Weather, Climate, and Society)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85105805420" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/wcas-d-20-0167.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0001386", "name": "Diagnosing the Time-Varying Value of Forecasts in Multiobjective Reservoir Control", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85104583803" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0001386" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.14351", "name": "Evaluating suspended sediment and turbidity reduction projects in a glacially conditioned catchment through dynamic regression and fluvial process-based modelling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.14351" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85115871684" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jcli-d-20-0264.1", "name": "Feature engineering for subseasonal-to-seasonal warm-season precipitation forecasts in the midwestern united states: Toward a unifying hypothesis of anomalous warm-season hydroclimatic circulation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jcli-d-20-0264.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85115322177" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/joc.6969", "name": "Identifying weather regimes for regional-scale stochastic weather generators", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/joc.6969" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098252309" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1752-1688.12906", "name": "Inter-model Comparison of Turbidity-Discharge Rating Curves and the Implications for Reservoir Operations Management", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85101931856" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1752-1688.12906" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr028824", "name": "Reconstructing Extreme Precipitation in the Sacramento River Watershed Using Tree-Ring Based Proxies of Cold-Season Precipitation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85105764042" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr028824" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.apenergy.2021.117316", "name": "The effects of wind generation and other market determinants on price spikes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apenergy.2021.117316" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85111346874" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr027184", "name": "Bootstrap Aggregation and Cross-Validation Methods to Reduce Overfitting in Reservoir Control Policy Search", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089847233" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr027184" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020ef001650", "name": "Can Exploratory Modeling of Water Scarcity Vulnerabilities and Robustness Be Scenario Neutral?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85093862903" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020ef001650" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019wr025502", "name": "Climate Adaptation as a Control Problem: Review and Perspectives on Dynamic Water Resources Planning Under Uncertainty", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019wr025502" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85081030619" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jamc-d-19-0109.1", "name": "Investigating long-range seasonal predictability of East African short rains: Influence of the Mascarene high on the indian ocean walker cell", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jamc-d-19-0109.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85086398556" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-19-0226.1", "name": "Spatial bias in medium-range forecasts of heavy precipitation in the sacramento river basin: Implications for water management", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-19-0226.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85086851115" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.13031/trans.13629", "name": "Understanding complex flow pathways within lab-scale denitrifying bioreactors with a conservative tracer", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85085134650" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.13031/trans.13629" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019wr025138", "name": "Copula Theory as a Generalized Framework for Flow\u2010Duration Curve Based Streamflow Estimates in Ungaged and Partially Gaged Catchments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019wr025138" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075470299" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr024463", "name": "Prediction and Inference of Flow Duration Curves Using Multioutput Neural Networks", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070819122" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr024463" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1752-1688.12750", "name": "A Rapid Response Survey to Characterize the Impacts of the 2017 High Water Event on Lake Ontario", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064647031" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1752-1688.12750" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr024446", "name": "A Weather-Regime-Based Stochastic Weather Generator for Climate Vulnerability Assessments of Water Systems in the Western United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070832060" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr024446" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-18-0128.1", "name": "A diagnostic-predictive assessment of winter precipitation over the Laurentian Great Lakes: Effects of ENSO and other teleconnections", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062464623" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-18-0128.1" } ] }, { "@type": "CreativeWork", "name": "Decision Scaling (DS): Decision Support for Climate Change", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85147435437" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0001091", "name": "Hierarchical Bayesian Model for Streamflow Estimation at Ungauged Sites via Spatial Scaling in the Great Lakes Basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0001091" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85067262657" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2018.09.309", "name": "Linking global climate change to local water availability: Limitations and prospects for a tropical mountain watershed", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2018.09.309" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054170234" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.watres.2019.02.012", "name": "QSARs to predict adsorption affinity of organic micropollutants for activated carbon and \u0392-cyclodextrin polymer adsorbents", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.watres.2019.02.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061785851" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019ef001154", "name": "Robust Adaptation to Multiscale Climate Variability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019ef001154" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068784605" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-18-0252.1", "name": "Seasonal predictability and change of large-scale summer precipitation patterns over the Northeast United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85073367460" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-18-0252.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.13443", "name": "Time-varying, nonlinear suspended sediment rating curves to characterize trends in water quality: An application to the Upper Hudson and Mohawk Rivers, New York", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13443" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063999562" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-18-0196.1", "name": "potential predictability of regional precipitation and discharge extremes using synoptic-scale climate information via machine learning: An evaluation for the eastern continental United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85066243400" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-18-0196.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018gl078089", "name": "A 500-Year Tree Ring-Based Reconstruction of Extreme Cold-Season Precipitation and Number of Atmospheric River Landfalls Across the Southwestern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018gl078089" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048950563" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-17-0186.1", "name": "A water balance-based, spatiotemporal evaluation of terrestrial evapotranspiration products across the contiguous United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-17-0186.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85047954522" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr023177", "name": "Balancing Flood Risk and Water Supply in California: Policy Search Integrating Short-Term Forecast Ensembles With Conjunctive Use", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054795946" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr023177" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017wr021268", "name": "Drivers of Variability in Public-Supply Water Use Across the Contiguous United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045694443" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr021268" } ] }, { "@type": "CreativeWork", "name": "Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050494834" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr022908", "name": "Hydroclimatological Drivers of Extreme Floods on Lake Ontario", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050483861" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr022908" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2018.02.029", "name": "Rainfed maize yield response to management and climate covariability at large spatial scales", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2018.02.029" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044590955" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0000865", "name": "Spatiotemporal impacts of climate and demand on water supply in the Apalachicola-Chattahoochee-Flint basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85035056350" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0000865" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jamc-d-18-0088.1", "name": "Summer covariability of surface climate for renewable energy across the contiguous United States: Role of the north Atlantic subtropical high", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jamc-d-18-0088.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062144875" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.11402", "name": "Time-varying suspended sediment-discharge rating curves to estimate climate impacts on fluvial sediment transport", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039416606" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.11402" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aae7a8", "name": "Yield response to climate, management, and genotype: A large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aae7a8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85056882106" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017wr021036", "name": "A Vulnerability-Based, Bottom-up Assessment of Future Riverine Flood Risk Using a Modified Peaks-Over-Threshold Approach and a Physically Based Hydrologic Model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85036586395" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr021036" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016wr019605", "name": "A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016wr019605" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85013683509" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2017.09.006", "name": "A user-friendly software package for VIC hydrologic model development", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85030482023" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2017.09.006" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017wr020381", "name": "Dynamic linear models to explore time-varying suspended sediment-discharge rating curves", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020422132" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017wr020381" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.dendro.2017.05.003", "name": "Hierarchical regression models for dendroclimatic standardization and climate reconstruction", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.dendro.2017.05.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020375561" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017gl075959", "name": "Zonal Wind Indices to Reconstruct CONUS Winter Precipitation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017gl075959" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040734328" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016wr018712", "name": "Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S.", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84971246211" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016wr018712" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015wr018470", "name": "El Ni\u00f1o and the U.S. precipitation and floods: What was expected for the January-March 2016 winter hydroclimate that is now unfolding?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959378956" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015wr018470" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00477-015-1180-8", "name": "Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00477-015-1180-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84958117940" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0000614", "name": "Potential impacts of changes in climate on turbidity in New York City's Ashokan reservoir", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84958523421" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0000614" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0000631", "name": "Selecting stochastic climate realizations toefficiently explore a wide range of climaterisk to water resource systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0000631" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84969509080" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jhm-d-15-0120.1", "name": "Spatiotemporal structure of precipitation related to tropical moisture exports over the eastern United States and its relation to climate teleconnections", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jhm-d-15-0120.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84961391414" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014wr016664", "name": "A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85027934159" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014wr016664" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-19-857-2015", "name": "Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922708904" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-19-857-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/02626667.2014.899701", "name": "Combining regression and spatial proximity for catchment model regionalization: a comparative study,Combinaison de la r\u00e9gression et de la proximit\u00e9 spatiale pour la r\u00e9gionalisation des mod\u00e8les de bassin versant: \u00e9tude comparative", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/02626667.2014.899701" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84933178227" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/jcli-d-15-0340.1", "name": "Daily precipitation and tropical moisture exports across the eastern United States: An application of archetypal analysis to identify spatiotemporal structure", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jcli-d-15-0340.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946219375" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)ee.1943-7870.0000997", "name": "Evaluation of Environmental Degradation Kinetics Using Hierarchical Bayesian Modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)ee.1943-7870.0000997" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941692037" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0000536", "name": "Expanded decision-scaling framework to select robust long-term water-system plans under hydroclimatic uncertainties", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0000536" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84945290742" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015gl064529", "name": "The effects of climate model similarity on probabilistic climate projections and the implications for local, risk-based adaptation planning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84940075447" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015gl064529" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.10409", "name": "The integrated effects of climate and hydrologic uncertainty on future flood risk assessments", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84930381614" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10409" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014wr015956", "name": "A climate change range-based method for estimating robustness for water resources supply", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84919650528" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014wr015956" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)wr.1943-5452.0000399", "name": "Reservoir management optimization for basin-wide ecological restoration in the connecticut river", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)wr.1943-5452.0000399" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923235293" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/wrcr.20528", "name": "A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887101321" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/wrcr.20528" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/9780784412947.115", "name": "Modeling the impact of climate change on hydropower operations in the Connecticut river basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887426506" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/9780784412947.115" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2013wr013818", "name": "Panel regression techniques for identifying impacts of anthropogenic landscape change on hydrologic response", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013wr013818" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896727276" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/9780784412947.286", "name": "Quantifying the domestic water demand projection related with climate projection", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/9780784412947.286" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84887463573" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/9780784412312.340", "name": "Coordinated reservoir management planning for large-scale ecological restoration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/9780784412312.340" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84866133037" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011wr011540", "name": "Dynamic reservoir management with real-option risk hedging as a robust adaptation to nonstationary climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011wr011540" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861118535" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012wr011860", "name": "Forecast-informed low-flow frequency analysis in a Bayesian framework for the northeastern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012wr011860" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868307396" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011wr011318", "name": "Toward a statistical framework to quantify the uncertainties of hydrologic response under climate change", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011wr011318" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870214957" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41173(414)127", "name": "Climate change response of three physically based hydrology models in the Connecticut River Watershed", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960437251" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41173(414)127" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41173(414)428", "name": "Hydrology models for climate change assessment: Inter-decadal climate variability and parameter calibration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41173(414)428" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960413287" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2011.08.038", "name": "Influences of North Atlantic climate variability on low-flows in the Connecticut River Basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80054053856" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2011.08.038" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41173(414)143", "name": "Seasonal hydrologic forecasts in multi-objective water resources management: Safeguards against forecast failure", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960386206" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41173(414)143" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41114(371)11", "name": "Evaluation of climate change impacts to reservoir operations within the Connecticut River Basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41114(371)11" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954981797" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41114(371)231", "name": "Optimizing reservoir operations in the Connecticut River basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954962201" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41114(371)231" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/41114(371)230", "name": "Relations between large-scale atmospheric circulation patterns and New England River flow", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954967431" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/41114(371)230" } ] } ] }, "url": "https://blogs.cornell.edu/steinschneider/", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "36337224700" } }
}