1,477,004
edits
No edit summary |
No edit summary |
||
Line 983: | Line 983: | ||
"id": "https://openalex.org/T10194", | "id": "https://openalex.org/T10194", | ||
"display_name": "Fractional Laplacian Operators", | "display_name": "Fractional Laplacian Operators", | ||
"value": 9e-06, | "value": "9e-06", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2604", | "id": "https://openalex.org/subfields/2604", | ||
Line 1,246: | Line 1,246: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5042214194" | "_id": "https://openalex.org/A5042214194" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-6058-5472", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-6058-5472", | |||
"givenName": "Jian-Guo", | |||
"familyName": "Liu", | |||
"address": { | |||
"addressCountry": "CN", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Beijing University of Posts and Telecommunications", | |||
"alternateName": "School of science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "12472" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi Normal University", | |||
"alternateName": "College of Science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "12642" | |||
} | |||
} | |||
], | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi University of Chinese Medicine", | |||
"alternateName": "College of Computer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "74582" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi University of Technology", | |||
"alternateName": "College of Computer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "177532" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-024-09472-4", | |||
"name": "Solving the variable coefficient nonlinear partial differential equations based on the bilinear residual network method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-024-09472-4" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/au.170668832.28112047/v1", | |||
"name": "Different wave structures for a new extended shallow water wave equation in (3+1) dimension", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/au.170668832.28112047/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-023-04831-3", | |||
"name": "New periodic-wave, periodic-cross-kink wave, three wave and other analytical wave solitons of new (2+1)-dimensional KdV equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-023-04831-3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2023/9321673", | |||
"name": "Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2023/9321673" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rinp.2022.105937", | |||
"name": "New dynamical behaviors for a new extension of the Shallow water model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rinp.2022.105937" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2020-0021", | |||
"name": "Interaction solutions of a variable-coefficient Kadomtsev\u2013Petviashvili equation with self-consistent sources", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2020-0021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2022/2815298", | |||
"name": "Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2022/2815298" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00033-021-01584-w", | |||
"name": "Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00033-021-01584-w" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217984921501967", | |||
"name": "New optical soliton solutions for Fokas\u2013Lenells dynamical equation via two various methods", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217984921501967" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/dmq1h-8jg05", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/dmq1h-8jg05" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/jnyxx-v2y31", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/jnyxx-v2y31" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rinp.2021.104009", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rinp.2021.104009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1402-4896/abd3c3", | |||
"name": "Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1402-4896/abd3c3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-020-06186-1", | |||
"name": "Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-020-06186-1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/au.161008575.57365949/v1", | |||
"name": "Breather-wave, multi-wave and interaction solutions for the (3+1)-dimensional generalized breaking soliton equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/au.161008575.57365949/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13324-020-00387-y", | |||
"name": "Double-periodic soliton solutions for the new (2\u00a0+\u00a01)-dimensional KdV equation in fluid flows and plasma physics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13324-020-00387-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s12043-019-1893-1", | |||
"name": "Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa\u2013Holm\u2013Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077326059" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s12043-019-1893-1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/5.0019219", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/5.0019219" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/dzy3t-0ag17", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/dzy3t-0ag17" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/fhexc-3bz07", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/fhexc-3bz07" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-019-00049-4", | |||
"name": "Multi-wave, breather wave, and interaction solutions of the Hirota\u2013Satsuma\u2013Ito equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-019-00049-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077548205" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-020-00405-9", | |||
"name": "An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo\u2013Miwa model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85085484670" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-020-00405-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3934/math.2020029", | |||
"name": "Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional blmp equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3934/math.2020029" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85076885142" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s40840-019-00836-3", | |||
"name": "Existence Results of Multiple Solutions for a 2nth-Order Finite Difference Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85073978864" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s40840-019-00836-3" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.11948/20190172", | |||
"name": "Interaction solutions and abundant exact solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85085021349" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.11948/20190172" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cjph.2020.08.008", | |||
"name": "Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cjph.2020.08.008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85089728348" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.camwa.2019.03.008", | |||
"name": "Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.camwa.2019.03.008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85062614713" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/i2019-12470-0", | |||
"name": "Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/i2019-12470-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85061252058" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00033-018-1050-6", | |||
"name": "The solitary wave, rogue wave and periodic solutions for the ( $$3+1$$ 3 + 1 )-dimensional soliton equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85057493951" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00033-018-1050-6" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4612-4", | |||
"name": "Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4612-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85055683173" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/71/7/793", | |||
"name": "Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85070609971" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/71/7/793" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217979219503429", | |||
"name": "Symbolic computations: Dispersive soliton solutions for (3 + 1)-dimensional Boussinesq and Kadomtsev-Petviashvili dynamical equations and its applications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217979219503429" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075787610" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.06.011", | |||
"name": "Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85049115852" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.06.011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217984918503438", | |||
"name": "Mixed type exact solutions to the (2+1)-dimensional Ito equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85053779719" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217984918503438" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4223-0", | |||
"name": "Interaction behaviors for the ( $$\\varvec{2+1}$$ 2 + 1 )-dimensional Sawada\u2013Kotera equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4223-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85044528800" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s12043-018-1568-3", | |||
"name": "Multiple periodic-soliton solutions of the $$(3+1)$$ ( 3 + 1 ) -dimensional generalised shallow water equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s12043-018-1568-3" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046291663" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/ccdc.2018.8407535", | |||
"name": "New exact solutions for the generalized Kuramoto-Sivashinsky equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/ccdc.2018.8407535" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85050882369" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/69/5/585", | |||
"name": "New Double-Periodic Soliton Solutions for the (2+1)-Dimensional Breaking Soliton Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/69/5/585" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85053639145" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.camwa.2018.02.020", | |||
"name": "Double-periodic soliton solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation in incompressible fluid", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042937816" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.camwa.2018.02.020" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2017.12.011", | |||
"name": "New non-traveling wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2017.12.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85040089461" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4111-7", | |||
"name": "Abundant lump and lump\u2013kink solutions for the new (3+1)-dimensional generalized Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4111-7" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85045244811" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.02.006", | |||
"name": "Existence of infinitely many solutions for fourth-order impulsive differential equations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042482211" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.02.006" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.01.010", | |||
"name": "Multiple soliton solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation by multiple exp-function method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.01.010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85041483774" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-017-3667-y", | |||
"name": "New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85023779777" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-017-3667-y" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.4999913", | |||
"name": "New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.4999913" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85031934617" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-017-3884-4", | |||
"name": "New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85032706464" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-017-3884-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-016-3267-2", | |||
"name": "New three-wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-016-3267-2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85006835804" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2016-0086", | |||
"name": "A Class of Exact Solutions of (3+1)-Dimensional Generalized B-Type Kadomtsev\u2013Petviashvili Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85017290749" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2016-0086" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exact periodic cross-kink wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85017416405" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.4966020", | |||
"name": "Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.4966020" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84994385977" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2015-0122", | |||
"name": "Multiple Soliton Solutions, Soliton-Type Solutions and Hyperbolic Solutions for the Benjamin\u2013Bona\u2013Mahony Equation with Variable Coefficients in Rotating Fluids and One-Dimensional Transmitted Waves", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2015-0122" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84983249806" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-016-2914-y", | |||
"name": "Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1) -dimensional generalized shallow water equation in oceans, estuaries and impoundments", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-016-2914-y" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84976480775" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3233/fi-2016-1355", | |||
"name": "Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schr\u00f6dinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84975518258" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3233/fi-2016-1355" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2013-0114", | |||
"name": "A class of exact solution of (3+1)-dimensional generalized shallow water equation system", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2013-0114" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923199028" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Solving (3 + 1)-dimensional generalized BKP equations by the improved (G\u2032/G)-expansion method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84947234205" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3233/fi-2014-1056", | |||
"name": "Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3233/fi-2014-1056" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84912117129" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13226-014-0100-9", | |||
"name": "Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84920764408" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13226-014-0100-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1186/2251-7235-7-49", | |||
"name": "Auto-B\u00e4cklund transformation and new exact solutions of the (3+1)-dimensional KP equation with variable coefficients", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1186/2251-7235-7-49" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/cdciem.2012.91", | |||
"name": "Generalized Hyperbolic-function Method with Computerized Symbolic Computation to the Nizhnik-Novikov-Veselov Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860528346" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/cdciem.2012.91" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cnsns.2008.01.011", | |||
"name": "Soliton-like solutions for the modified variable-coefficient Ginzburg\u2013Landau equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cnsns.2008.01.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-55549136097" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cpc.2008.06.014", | |||
"name": "Auto-B\u00e4cklund transformation and exact solutions of the generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-53649087961" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cpc.2008.06.014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/47/1/030", | |||
"name": "Multiple Soliton-Like Solutions and Similarity Reductions of a Spherical Kadomtsev\u2013Petviashvili Equation from Plasma Physics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33846867692" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/47/1/030" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.2435324", | |||
"name": "Auto-Ba\u0308cklund transformation and new exact solutions of the generalized variable-coefficients two-dimensional Korteweg\u2013de Vries model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.2435324" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33847719130" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s1005-8885(07)60020-x", | |||
"name": "Transformations for the variable coefficient Ginzburg-Landau equation with symbolic computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s1005-8885(07)60020-x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33751558416" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0256-307x/23/7/004", | |||
"name": "Auto-B\u00e4cklund Transformation and Soliton-Type Solutions of the Generalized Variable-Coefficient Kadomtsev\u2013Petviashvili Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0256-307x/23/7/004" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745606154" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints201811.0443.v1", | |||
"name": "Extended Rational Sinh-Cosh and Sin-Cos Methods to Derive Solutions to the Coupled Higgs System", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints201811.0443.v1" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "I-3808-2013" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "56479400700" | |||
} | |||
] | |||
} | } | ||
} | } |