Item talk:Q66324
From geokb
{
"USGS Publications Warehouse": { "schema": { "@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "USGS Numbered Series", "name": "Short Course Introduction to Quantitative Mineral Resource Assessments", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "ofr20071434", "url": "https://pubs.usgs.gov/publication/ofr20071434" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 80812 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3133/ofr20071434", "url": "https://doi.org/10.3133/ofr20071434" } ], "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Open-File Report" } ], "datePublished": "2007", "dateModified": "2012-02-02", "abstract": "This is an abbreviated text supplementing the content of three sets of slides used in a short course that has been presented by the author at several workshops. The slides should be viewed in the order of (1) Introduction and models, (2) Delineation and estimation, and (3) Combining estimates and summary. References cited in the slides are listed at the end of this text.\r\n\r\nThe purpose of the three-part form of mineral resource assessments discussed in the accompanying slides is to make unbiased quantitative assessments in a format needed in decision-support systems so that consequences of alternative courses of action can be examined. The three-part form of mineral resource assessments was developed to assist policy makers evaluate the consequences of alternative courses of action with respect to land use and mineral-resource development. The audience for three-part assessments is a governmental or industrial policy maker, a manager of exploration, a planner of regional development, or similar decision-maker. Some of the tools and models presented here will be useful for selection of exploration sites, but that is a side benefit, not the goal.\r\n\r\nTo provide unbiased information, we recommend the three-part form of mineral resource assessments where general locations of undiscovered deposits are delineated from a deposit type's geologic setting, frequency distributions of tonnages and grades of well-explored deposits serve as models of grades and tonnages of undiscovered deposits, and number of undiscovered deposits are estimated probabilistically by type. The internally consistent descriptive, grade and tonnage, deposit density, and economic models used in the design of the three-part form of assessments reduce the chances of biased estimates of the undiscovered resources.\r\n\r\nWhat and why quantitative resource assessments: The kind of assessment recommended here is founded in decision analysis in order to provide a framework for making decisions concerning mineral resources under conditions of uncertainty. What this means is that we start with the question of what kinds of questions is the decision maker trying to resolve and what forms of information would aid in resolving these questions.\r\n\r\nSome applications of mineral resource assessments: To plan and guide exploration programs, to assist in land use planning, to plan the location of infrastructure, to estimate mineral endowment, and to identify deposits that present special environmental challenges.\r\n\r\nWhy not just rank prospects / areas? Need for financial analysis, need for comparison with other land uses, need for comparison with distant tracts of land, need to know how uncertain the estimates are, need for consideration of economic and environmental consequences of possible development.\r\n\r\nOur goal is to provide unbiased information useful to decision-makers.", "description": "Report: 13 p.; Slide Sets", "publisher": { "@type": "Organization", "name": "Geological Survey (U.S.)" }, "author": [ { "@type": "Person", "name": "Singer, Donald A. dsinger@usgs.gov", "givenName": "Donald A.", "familyName": "Singer", "email": "dsinger@usgs.gov" } ], "funder": [ { "@type": "Organization", "name": "Western Mineral Resources", "url": "https://www.usgs.gov/centers/gmeg" } ] } }, "OpenAlex": { "abstract_inverted_index": { "This": [ 0 ], "is": [ 1, 79, 137, 174, 281, 305, 317, 419 ], "an": [ 2 ], "abbreviated": [ 3 ], "text": [ 4 ], "supplementing": [ 5 ], "the": [ 6, 23, 34, 54, 59, 67, 76, 117, 158, 179, 187, 251, 254, 260, 266, 310, 318, 355, 403 ], "content": [ 7 ], "of": [ 8, 11, 36, 61, 66, 70, 95, 98, 106, 119, 122, 146, 150, 157, 169, 190, 197, 210, 214, 220, 224, 229, 253, 257, 262, 265, 277, 300, 312, 315, 327, 337, 357, 396, 409, 414 ], "three": [ 9 ], "sets": [ 10 ], "slides": [ 12, 29, 55, 78 ], "used": [ 13, 249 ], "in": [ 14, 33, 53, 75, 85, 89, 250, 283, 286, 331, 349 ], "a": [ 15, 86, 138, 144, 148, 175, 203, 290 ], "short": [ 16 ], "course": [ 17 ], "that": [ 18, 93, 173, 306, 367 ], "has": [ 19 ], "been": [ 20 ], "presented": [ 21, 162 ], "by": [ 22, 235 ], "author": [ 24 ], "at": [ 25, 58 ], "several": [ 26 ], "workshops.": [ 27 ], "The": [ 28, 64, 103, 132, 237, 275 ], "should": [ 30 ], "be": [ 31, 101, 165 ], "viewed": [ 32 ], "order": [ 35, 287 ], "(1)": [ 37 ], "Introduction": [ 38 ], "and": [ 39, 43, 45, 49, 129, 160, 212, 222, 227, 242, 246, 270, 324, 343, 363, 411 ], "models,": [ 40 ], "(2)": [ 41 ], "Delineation": [ 42 ], "estimation,": [ 44 ], "(3)": [ 46 ], "Combining": [ 47 ], "estimates": [ 48, 264, 404 ], "summary.": [ 50 ], "References": [ 51 ], "cited": [ 52 ], "are": [ 56, 200, 232 ], "listed": [ 57 ], "end": [ 60 ], "this": [ 62, 303 ], "text.": [ 63 ], "purpose": [ 65 ], "three-part": [ 68, 104, 135, 188, 255 ], "form": [ 69, 105, 189, 256 ], "mineral": [ 71, 107, 191, 296, 338, 361 ], "resource": [ 72, 108, 192, 273, 339 ], "assessments": [ 73, 84, 109, 136, 193, 258 ], "discussed": [ 74 ], "accompanying": [ 77 ], "to": [ 80, 112, 126, 288, 322, 347, 353, 359, 364, 399, 420, 425 ], "make": [ 81 ], "unbiased": [ 82, 183, 422 ], "quantitative": [ 83, 272 ], "format": [ 87 ], "needed": [ 88 ], "decision-support": [ 90 ], "systems": [ 91 ], "so": [ 92 ], "consequences": [ 94, 118, 413 ], "alternative": [ 96, 120 ], "courses": [ 97, 121 ], "action": [ 99, 123 ], "can": [ 100 ], "examined.": [ 102 ], "was": [ 110 ], "developed": [ 111 ], "assist": [ 113, 348 ], "policy": [ 114, 142 ], "makers": [ 115 ], "evaluate": [ 116 ], "with": [ 124, 309, 386, 393 ], "respect": [ 125 ], "land": [ 127, 350, 388 ], "use": [ 128, 351 ], "mineral-resource": [ 130 ], "development.": [ 131, 416 ], "audience": [ 133 ], "for": [ 134, 167, 292, 380, 384, 391, 407 ], "governmental": [ 139 ], "or": [ 140, 153 ], "industrial": [ 141 ], "maker,": [ 143 ], "manager": [ 145 ], "exploration,": [ 147 ], "planner": [ 149 ], "regional": [ 151 ], "development,": [ 152 ], "similar": [ 154 ], "decision-maker.": [ 155 ], "Some": [ 156, 335 ], "tools": [ 159 ], "models": [ 161, 219, 248 ], "here": [ 163, 280 ], "will": [ 164 ], "useful": [ 166, 424 ], "selection": [ 168 ], "exploration": [ 170, 345 ], "sites,": [ 171 ], "but": [ 172 ], "side": [ 176 ], "benefit,": [ 177 ], "not": [ 178, 373 ], "goal.": [ 180 ], "To": [ 181, 341 ], "provide": [ 182, 289, 421 ], "information,": [ 184 ], "we": [ 185, 307 ], "recommend": [ 186 ], "where": [ 194 ], "general": [ 195 ], "locations": [ 196 ], "undiscovered": [ 198, 225, 230, 267 ], "deposits": [ 199, 216, 231, 366 ], "delineated": [ 201 ], "from": [ 202 ], "deposit": [ 204, 244 ], "type's": [ 205 ], "geologic": [ 206 ], "setting,": [ 207 ], "frequency": [ 208 ], "distributions": [ 209 ], "tonnages": [ 211, 223 ], "grades": [ 213, 221 ], "well-explored": [ 215 ], "serve": [ 217 ], "as": [ 218 ], "deposits,": [ 226 ], "number": [ 228 ], "estimated": [ 233 ], "probabilistically": [ 234 ], "type.": [ 236 ], "internally": [ 238 ], "consistent": [ 239 ], "descriptive,": [ 240 ], "grade": [ 241 ], "tonnage,": [ 243 ], "density,": [ 245 ], "economic": [ 247, 410 ], "design": [ 252 ], "reduce": [ 259 ], "chances": [ 261 ], "biased": [ 263 ], "resources.": [ 268 ], "What": [ 269, 302 ], "why": [ 271 ], "assessments:": [ 274, 340 ], "kind": [ 276 ], "assessment": [ 278 ], "recommended": [ 279 ], "founded": [ 282 ], "decision": [ 284, 319 ], "analysis": [ 285 ], "framework": [ 291 ], "making": [ 293 ], "decisions": [ 294 ], "concerning": [ 295 ], "resources": [ 297 ], "under": [ 298 ], "conditions": [ 299 ], "uncertainty.": [ 301 ], "means": [ 304 ], "start": [ 308 ], "question": [ 311 ], "what": [ 313, 325 ], "kinds": [ 314 ], "questions": [ 316 ], "maker": [ 320 ], "trying": [ 321 ], "resolve": [ 323 ], "forms": [ 326 ], "information": [ 328, 423 ], "would": [ 329 ], "aid": [ 330 ], "resolving": [ 332 ], "these": [ 333 ], "questions.": [ 334 ], "applications": [ 336 ], "plan": [ 342, 354 ], "guide": [ 344 ], "programs,": [ 346 ], "planning,": [ 352 ], "location": [ 356 ], "infrastructure,": [ 358 ], "estimate": [ 360 ], "endowment,": [ 362 ], "identify": [ 365 ], "present": [ 368 ], "special": [ 369 ], "environmental": [ 370, 412 ], "challenges.": [ 371 ], "Why": [ 372 ], "just": [ 374 ], "rank": [ 375 ], "prospects": [ 376 ], "/": [ 377 ], "areas?": [ 378 ], "Need": [ 379 ], "financial": [ 381 ], "analysis,": [ 382 ], "need": [ 383, 390, 398, 406 ], "comparison": [ 385, 392 ], "other": [ 387 ], "uses,": [ 389 ], "distant": [ 394 ], "tracts": [ 395 ], "land,": [ 397 ], "know": [ 400 ], "how": [ 401 ], "uncertain": [ 402 ], "are,": [ 405 ], "consideration": [ 408 ], "possible": [ 415 ], "Our": [ 417 ], "goal": [ 418 ], "decision-makers.": [ 426 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5084615776", "display_name": "Donald A. Singer", "orcid": "https://orcid.org/0000-0001-6812-6441" }, "institutions": [], "countries": [], "is_corresponding": true, "raw_author_name": "Donald A. Singer", "raw_affiliation_strings": [], "affiliations": [] } ], "best_oa_location": null, "biblio": { "volume": null, "issue": null, "first_page": null, "last_page": null }, "citation_normalized_percentile": { "value": 0.936842, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1538352174", "cited_by_count": 26, "cited_by_percentile_year": { "min": 90, "max": 91 }, "concepts": [ { "id": "https://openalex.org/c206345919", "wikidata": "https://www.wikidata.org/wiki/Q20380951", "display_name": "Resource (disambiguation)", "level": 2, "score": 0.6937879, "qid": null }, { "id": "https://openalex.org/c2776999362", "wikidata": "https://www.wikidata.org/wiki/Q2349274", "display_name": "Planner", "level": 2, "score": 0.60088634, "qid": null }, { "id": "https://openalex.org/c126457475", "wikidata": "https://www.wikidata.org/wiki/Q12131447", "display_name": "Mineral resource classification", "level": 2, "score": 0.5773104, "qid": null }, { "id": "https://openalex.org/c36656581", "wikidata": "https://www.wikidata.org/wiki/Q491774", "display_name": "Tonnage", "level": 2, "score": 0.56121385, "qid": null }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.54837143, "qid": "Q158969" }, { "id": "https://openalex.org/c42475967", "wikidata": "https://www.wikidata.org/wiki/Q194292", "display_name": "Operations research", "level": 1, "score": 0.39611083, "qid": "Q226287" }, { "id": "https://openalex.org/c107826830", "wikidata": "https://www.wikidata.org/wiki/Q929380", "display_name": "Environmental resource management", "level": 1, "score": 0.35726374, "qid": "Q226238" }, { "id": "https://openalex.org/c127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.30143535, "qid": "Q158984" }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.25372612, "qid": "Q166085" }, { "id": "https://openalex.org/c127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.17642885, "qid": "Q158977" }, { "id": "https://openalex.org/c154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.15039328, "qid": "Q166116" }, { "id": "https://openalex.org/c17409809", "wikidata": "https://www.wikidata.org/wiki/Q161764", "display_name": "Geochemistry", "level": 1, "score": 0.09951356, "qid": "Q158980" }, { "id": "https://openalex.org/c31258907", "wikidata": "https://www.wikidata.org/wiki/Q1301371", "display_name": "Computer network", "level": 1, "score": 0.0, "qid": "Q166178" }, { "id": "https://openalex.org/c111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 0.0, "qid": "Q166123" } ], "corresponding_author_ids": [ "https://openalex.org/A5084615776" ], "corresponding_institution_ids": [], "countries_distinct_count": 0, "counts_by_year": [ { "year": 2024, "cited_by_count": 3 }, { "year": 2023, "cited_by_count": 3 }, { "year": 2020, "cited_by_count": 2 }, { "year": 2019, "cited_by_count": 2 }, { "year": 2018, "cited_by_count": 4 }, { "year": 2017, "cited_by_count": 3 }, { "year": 2016, "cited_by_count": 1 }, { "year": 2015, "cited_by_count": 2 }, { "year": 2014, "cited_by_count": 3 }, { "year": 2012, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Short Course Introduction to Quantitative Mineral Resource Assessments", "doi": "https://doi.org/10.3133/ofr20071434", "fwci": 1.009, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W1538352174", "ids": { "openalex": "https://openalex.org/W1538352174", "doi": "https://doi.org/10.3133/ofr20071434", "mag": "1538352174" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 0, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/planner", "display_name": "Planner", "score": 0.60088634 }, { "id": "https://openalex.org/keywords/mineral-resource-classification", "display_name": "Mineral resource classification", "score": 0.5773104 }, { "id": "https://openalex.org/keywords/tonnage", "display_name": "Tonnage", "score": 0.56121385 }, { "id": "https://openalex.org/keywords/mineral-prospectivity", "display_name": "Mineral Prospectivity", "score": 0.506931 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.3133/ofr20071434", "pdf_url": null, "source": { "id": "https://openalex.org/S4210194219", "display_name": "Antarctica A Keystone in a Changing World", "issn_l": "0196-1497", "issn": [ "0196-1497", "2331-1258", "2332-4899" ], "is_oa": true, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310316088", "host_organization_name": "United States Department of the Interior", "host_organization_lineage": [ "https://openalex.org/P4310316088" ], "host_organization_lineage_names": [ "United States Department of the Interior" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W1538352174/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.3133/ofr20071434", "pdf_url": null, "source": { "id": "https://openalex.org/S4210194219", "display_name": "Antarctica A Keystone in a Changing World", "issn_l": "0196-1497", "issn": [ "0196-1497", "2331-1258", "2332-4899" ], "is_oa": true, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310316088", "host_organization_name": "United States Department of the Interior", "host_organization_lineage": [ "https://openalex.org/P4310316088" ], "host_organization_lineage_names": [ "United States Department of the Interior" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9997, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2007-01-01", "publication_year": 2007, "referenced_works": [ "https://openalex.org/W1043638657", "https://openalex.org/W113095071", "https://openalex.org/W143336073", "https://openalex.org/W1491986501", "https://openalex.org/W1513347936", "https://openalex.org/W1524950519", "https://openalex.org/W1561553493", "https://openalex.org/W1582237050", "https://openalex.org/W1588278510", "https://openalex.org/W1588726967", "https://openalex.org/W1601944394", "https://openalex.org/W162587892", "https://openalex.org/W171220687", "https://openalex.org/W1848758123", "https://openalex.org/W185293185", "https://openalex.org/W1860253472", "https://openalex.org/W1964311492", "https://openalex.org/W1978781791", "https://openalex.org/W2031701670", "https://openalex.org/W2039254862", "https://openalex.org/W2046690910", "https://openalex.org/W2056408112", "https://openalex.org/W2062821215", "https://openalex.org/W2075910178", "https://openalex.org/W2085860984", "https://openalex.org/W2126464523", "https://openalex.org/W2160213023", "https://openalex.org/W2263122493", "https://openalex.org/W2273220722", "https://openalex.org/W2806384831", "https://openalex.org/W2810931877", "https://openalex.org/W2894900434", "https://openalex.org/W2899085172", "https://openalex.org/W297201657", "https://openalex.org/W3128841341", "https://openalex.org/W3196047555", "https://openalex.org/W3573703", "https://openalex.org/W580618071", "https://openalex.org/W61274813", "https://openalex.org/W72227809" ], "referenced_works_count": 40, "related_works": [ "https://openalex.org/W4293167341", "https://openalex.org/W2910372528", "https://openalex.org/W2391727733", "https://openalex.org/W2386147781", "https://openalex.org/W2371270590", "https://openalex.org/W2367462312", "https://openalex.org/W2361453983", "https://openalex.org/W2358638843", "https://openalex.org/W2358206010", "https://openalex.org/W1990265173" ], "sustainable_development_goals": [], "title": "Short Course Introduction to Quantitative Mineral Resource Assessments", "topics": [ { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9997, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13065", "display_name": "Operations Research in Mine Planning", "score": 0.9793, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "score": 0.9399, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-10T09:28:00.309945", "versions": [], "qid": "Q66324" }
}